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ABSTRACT 

Construction frequently appears at the bottom of productivity charts with decreasing 

indexes of productivity over the years. Lack of innovation and delayed adoption, informal 

processes or insufficient rigor and consistency in process execution, insufficient 

knowledge transfer from project to project, weak project monitoring, little cross-

functional cooperation, little collaboration with suppliers, conservative company culture, 

and a shortage of young talent and people development are usual issues. Whereas work 

has been carried out on information technology and automation in construction their 

application is isolated without an interconnected information flow. This paper suggests a 

framework to address production issues on construction by implementing an integrated 

automatic supervisory control and data acquisition for management and operations. The 

system is divided into planning, monitoring, controlling, and executing groups clustering 

technologies to track both the project product and production. This research stands on the 

four pillars of manufacturing knowledge and lean production (production processes, 

production management, equipment/tool design, and automated systems and control). 

The framework offers benefits such as increased information flow, detection and 

prevention of overburdening equipment or labor (Muri - 無理 ) and production 

unevenness (Mura - 斑), reduction of waste (Muda - 無駄), evidential and continuous 

process standardization and improvement, reuse and abstraction of project information 

across endeavors. 
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INTRODUCTION 

In manufacturing, the operation is constantly monitored by the supervisory control and 

data acquisition (SCADA) system. The system monitors, gathers, and processes real-time 
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data from devices such as sensors and cameras, recording events into a log file and/or 

displaying the operational information to local and/or remote locations through human-

machine interface (HMI) software. Because the information is available as soon as 

possible corrective actions can be taken almost immediately. With the current 

advancements in computing, intelligent models can also run in real time to detect future 

issues supporting preventive actions. Despite SCADA systems and automation being 

standard production tools in manufacturing their use in construction is minimal and 

limited to isolated equipment. 

In manufacturing, the production moves from machine to machine, worker to worker, 

or a combination of both. The route of production is fixed (Antunes and Gonzalez 2015; 

Hayes and Wheelwright 1979). Thus, the positions of sensors and actuators are fixed and 

planned according to the production routes and its flow. Once set, the positions only need 

to be modified if the production routes change. In construction production routes are 

flexible. “Jobs arrive in different forms and require different tasks, and thus the 

equipment tends to be relatively general purpose (Hayes and Wheelwright 1979).” Some 

production routes will only exist long after the beginning of the project by the time that 

others would be extinct. Construction must then rely on general purpose sensors that, as 

the equipment, can be used in different applications through the project life-cycle, often, 

requiring those also to be mobile. Hence, traditional instrumentation (and sensor 

positioning) used in a manufacturing SCADA systems do not work in construction, as the 

instrumentation must be mobile. 

Building Information Modeling (BIM) can be considered as the closest system to a 

SCADA applied in construction. BIM is the only system in construction that may contain 

the production layout. However, BIM focuses mostly on production planning (Nederveen 

and Tolman 1992; Rossini et al. 2017). The monitoring and control are still performed 

manually regardless of the use of BIM. The production aspect of BIM, as well the general 

industry, relies on primitive project management practices such as critical path and Gantt 

charts [the latter neither being the first nor the most sophisticated production tracking 

approach (Antunes 2017; Wesolowski 1978)]. These obsolete practices have been 

abandoned in the industries with high productivity, such as information technology. 

Construction occupies the bottom of productivity charts even showing negative indexes 

of productivity over the years (National Society of Professional Engineers 2014). Some 

common issues are lack of innovation and delayed adoption, informal processes or 

insufficient rigor and consistency in process execution, insufficient knowledge transfer 

from project to project, weak project monitoring, little cross-functional cooperation, little 

collaboration with suppliers, conservative company culture, and a shortage of young 

talent and people development (Almeida and Solas 2016). 

Although much work has been done on implementing information technology and 

automation in construction their application on an integrated flow of information is sparse. 

This paper proposes a framework based on the current literature and technology to 

implement automatic monitoring and control for construction management and operations 

that could be useful to address the biggest issues of production in construction. 

Conjointly, this research uses four pillars of manufacturing knowledge and Lean 
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production: production processes, production management, equipment/tool design, and 

automated systems and control. The goal should be achieved by both top-down and 

bottom-up approaches. The top-down approach will tackle the production system 

collecting information about the construction environment and its changes. The bottom-

up approach will analyze the worker’s activity. By using smart-tools, embedded hardware, 

Internet-of-things (IoT) and tracking the effort of labor can be measured and related to 

project progress. The two approaches are stitched together by a machine learning engine 

which makes sense of the data and the production theory comparing what has been done 

with the plan provided in the BIM model.  

TECHNOLOGY 

BUILDING INFORMATION MODELING 

BIM is a powerful, yet ‘promising’ tool for the design and construction industries. 

‘Promising’ standing for both what it can do at the present and in the future. BIM is still 

seen as a new technology in construction despite the increasing adoption and awareness 

of BIM over the years (McGraw Hill Construction 2012; National BIM 2017). 

The concept of BIM can be pinpointed back to the year of 1962 when Engelbart 

presented a hypothetical description of computer-based augmentation system (Engelbart 

1962). The application of computational solutions in construction was researched a bit 

later 

(Eastman 1969, 1973). The research focused on the automated space planning using 

artificial intelligence in the bi-dimensional realm. The term ‘Building Information 

Management’ appeared 30 years later (Nederveen and Tolman 1992) while the first 

commercial implementation using this term is credited to ArchiCAD (successor of Radar 

CH from 1984 for the Apple Lisa Operating System). Historically, it is important to note 

that BIM did not derive from bi or tri-dimensional CAD. BIM (concept) is contemporary 

of CAD development. Nevertheless, BIM as a tool built upon CAD three-dimensional 

design tools for building modelers, which was a fully developed graphical tool for 

building modeling available at the time.  

The manufacturing industry explored further benefits of the tool besides graphical 

modeling, in particular, parametric information technology tools (Autodesk 2002). Forms 

in CAD drawings evolved to objects with the development of object-oriented 

programming languages and their implementation to CAD systems in the early 1990’s. 

Objects can bear graphical and non-graphical information bringing advances in both areas. 

From a graphical perspective, instead of drawing elements, one by one the user could 

design them separately and insert and reuse objects in the desired location. The group of 

lines, forms, and surfaces is interpreted as a three-dimensional geometrical model of the 

element it represents, for instance, a door or a window. The non-graphical perspective 

gives meaning to that object. The object contains multiple graphical information, such as 

the drawings of the door opened and closed. The object can have parts, and these parts 

can be of different materials with different properties. The objects may also contain 

production information attached, such as cost, labor, schedule, and effort what will give 
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BIM means to serve as a planning tool. Furthermore, changes required can be done in the 

element and automatically replicated where it has been used rather than laborious one by 

one changes. Overall, the reusable objects can bare more details and libraries of objects 

could be developed and shared. 

VIRTUAL REALITY AND AUGMENTED REALITY 

Both virtual reality (VR) and augmented reality (AR) make use of 3D models to create a 

scene in which the user can freely observe and/or interact with the models. What set these 

technologies apart is how they use the background where the objects lie. Virtual reality 

fully immerses the user providing a background to the environment. The user has the 

perception of being physically present in a non-physical world. Conversely, augmented 

reality utilizes the real environment as the background to project the models. The user is 

partially immersed. Each one has different applications. Using 3D models, VR can 

display a fictional scenario, for example, a functioning underground subway station even 

before excavations begin. AR requires a background, thus, at least part of the station must 

be in place. That is due to the fact that AR requires the recognition and tracking of 

environment specific points for object placement. Both VR and AR are useful as HMI. 

LIGHT DETECTION AND RANGING 

Light Detection and Ranging (LiDAR) is a remote sensing method, which uses light 

reflection to measure distances. The emitter shoots the light (ultraviolet, visible, or near 

infrared) which is reflected and then captured by the receptor. As the speed of light, c, is 

known, the time between emission and reception, t, is used to calculate the distance, d, 

from the emitter to the reflector and back to the sensor, i.e., t=2d/c. An Global 

Positioning System (GPS) receiver and an Inertial Measurement Unit (IMU) provide the 

absolute position and orientation of the sensor. Thus, it is possible to calculate the 

position coordinates of the reflective surface. One implementation of LiDAR consists of a 

vertical array of emitters mounted on a rotational plate creating a linear scan that sweeps 

the surroundings at each rotation. The result is a cloud of points which describes the 

environment around the sensor. Despite the fact that the cloud of points provides accurate 

measurement; the data does not identify objects. Basically, this cloud consists of x, y, and 

z coordinates of each point. Making sense of what a group of points is often is a manual 

task. Another limitation of LiDAR scans is the ‘shadowing.’ Because the technology 

relies on reflection, it can make sense of lies behind a reflective surface or at the non-

reflective surface, such as water. The shadowing effect can be eliminated by scanning the 

environment from different locations and thus overlapping cloud points [once the LiDAR 

scans are almost ever combined with Global Positioning System (GPS) and inertial 

measurement units]. 

LiDAR has been integrated to BIM aiming to identify defects (Wang et al. 2015). 

That happens by comparing LiDAR measurements against BIM model specifications. 

Deviations out of determined bounds are then identified as defects (Muda – Level II). A 

quadcopter (any other carrier is possible, such as an aquatic or terrestrial drone or even a 

backpack) inspects the site using LiDAR (inspection may also be considered Muda of 

over-processing given the idea that the task should be done correctly instead of being 
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inspected for the approval). In this approach the defect flag rises without human 

interaction, it however does not characterize a real-time system. The first reason is that 

the defect will only be detected when (and if) the drone finds the issue, not at the time the 

defect occurred. The second is that real-time systems require a timely response to the 

event. A response out of the time-frame often results in catastrophic failure. The response 

to the identified defect is not time-dependent. A real-time system depends on both the 

logical result of the event and the physical instant features (Kopetz 2011). For instance, 

the quadcopter drone moves forwards when detects on obstruction in its trajectory (event). 

The trajectory correction (response) must happen in a timely manner otherwise the drone 

will crash. 

IMAGE 

Image analysis can be an important tool in construction with several applications during 

the project life-cycle. A simple application can the defect inspection, where the inspector 

reports the non-conformities by taking pictures of the items out of specification and 

which will feed a punch list to be addressed by the contractors (Muda of rework). The 

pictures are used as evidence of the status of the non-conformities detected. 

Additionally, because special cameras/lenses/sensors can capture infra-red and 

ultraviolet, which are invisible to the human eye, the collected information can be used 

for evaluating thermal and light insulation. Depending on what the cameras are mounted, 

they can provide visual information from specific angles that are known to be dangerous 

for human inspection (e.g., in confined spaces), or even impossible (e.g. for the pipelines). 

The combination of multiple images provides even more information. Aerial mapping, 

elevation level, and 3D mapping are some examples in which several images are stitched 

together. Moreover, the image analysis process can be repeated periodically what will 

result in the visual representation of the evolution of a particular area or item over time. 

Nevertheless, image do not supply accurate measurements to what they represent. To add 

accurate quantitative data to images, these can be combined with LiDAR (Fei et al. 2008) 

or with sequenced BIM models (Skibniewsk 2014).  

CHRONO-ANALYSIS 

Chrono-analysis is the assessment of footages to evaluate production. The footages are 

captured by cameras positioned around the shop floor to record an activity done by the 

worker(s). The time spent by the worker(s) on each task of the activity can be measured 

by watching the recordings. The tasks are classified into three major categories: value-

adding, non-value-adding but necessary (Muda – Level I), and non-value-adding and 

unnecessary (Muda – Level II). One of the mantras of Lean is “eliminate Muda.” 

Accordingly, first, the analyst will identify each task that composes the activity. For 

instance, the footage of the activity contains the recordings of the set-up, the core task, 

breaks and the cleaning. Next, the analyst chronographs each task. Then, the analyst plan 

on how to eliminate or at least minimize the time spent on non-value-adding tasks (set-up, 

breaks, and cleaning). Then, the analyst plan on how to eliminate or at least minimize the 

time spent on non-value-adding tasks (set-up, breaks, and cleaning). Later, the analyst 

implements the plan and potential solutions. The analyst's records new footage of the 
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activity execution and tracks the time spend on the tasks. After a comparison of the times 

to the original results, the analyst updates the activity standard with the solutions that 

resulted in improvement. Chrono-analysis can be seen as lean focused, more detailed, and 

evidential implementation of time and motion analysis. The caveats: chrono-analysis is 

usually a laborious process conducted eventually rather than continuously; the benefits 

for tasks with a low level of repetitiveness are minuscule. 

PRODUCTION THEORY 

The traditional theory about fundamental mechanisms of production in repetitive 

processes in construction is at an embryonic stage and does not yet fully establish the 

foundations of a production model. The traditional and convenient approach to project-

driven production in construction is to rely on linear steady state models. By considering 

the transient state, Productivity Function produces models that are more accurate in 

describing the processes dynamics than the steady state approaches (Antunes et al. 2017). 

The Productivity Function provides a mathematical foundation to develop algebraic for 

the calculations of cycle times (average, best- and worst-cases), throughput at capacity 

(Antunes et al. 2018), and the influence of the transient state time in the production 

variability (Antunes et al. 2016). 

Productivity Function has been applied in feedback loop control yielding a controlling 

approach [Productivity Function Predictive Control (PFPC)] that can achieve high 

performances even when processes operate closer to capacity (Antunes 2017). Moreover, 

this performance enhancement is higher when PFPC is applied to processes in a parade-

of-trades (Tommelein 1998). The PFPC shown to be a robust approach to plan, control, 

and optimize production and supply chain in construction with direct implications to 

management practices such as takt time. A benefit of PFPC is its focus on minimizing the 

variances of output to the set point or plan. The PFMPC can operate satisfactorily even 

without an accurate model (Antunes 2017). In practice, the use of adaptive PFPC 

(APFPC) can be useful. This adaptive version estimates a Productivity Function 

cyclically within a period; thus, the control relies on a model that is accurate to the 

current time frame. Therefore, if the production system evolves (which is the goal of 

continuous improvement) that makes the model obsolete, APFPC can relearn the process 

and estimate a new model automatically. 

Although the Productivity Function can describe a variety of systems (including 

multi-variables systems), a structure that can embrace nonlinear and/or time-variant 

systems is required; and respectively, the introduction of linear time-varying space-state 

models which can also describe nonlinear systems. Nevertheless, the evaluation of these 

function from the data is based on the back-propagation algorithm (Antunes 2017), which 

is a machine learning tool. 

MACHINE LEARNING 

Machine learning is the term used to describe a field in computer science where the 

machine is trained on how to do a task instead of being programmed. Thus, by being 

trained (or training itself) the machine can develop its own way of how to execute the 

task (Silver et al. 2017). The training can be either assisted or unassisted. Assisted 
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training means that the inputs and outputs are provided to the machine that makes sense 

of the conditions to determine the output. For unassisted training, only the inputs are 

available. That entails enormous flexibility to machine learning and its applicability. As 

such, machine learning can mix a variety of input sources (features) to determine or 

classify the output, being capable of performing simple (such as an and operation) to 

complex tasks. For instance, it can evaluate labor processes as numerical values to 

estimate a non-linear productivity function (Antunes 2017), or identify and track different 

elements at once in a video feed (Gordon et al. 2017).  

FRAMEWORK 

The top-down and bottom-up approaches interact joining theory and practice in 

continuous improvement loop. This suggestion stands on two tenets: observer effect and 

Genchi Genbutsu. In physics, the term observer effect (Bianchi 2013) defines the 

influence of the observation act to the event. It means that by observing an event, the 

observer may alter the event, and consequently modify the observation. This effect is also 

known in the human sciences, where subjects have their behavior affected by being 

observed. In this sense, the awareness of being observed may modify the production 

system and its model. Thus, production is constantly observed, and the information is 

used to modify production. Genchi Genbutsu, a principle of the Toyota Production 

System, which means ‘go to the source and get the facts to make the right decision.’ In 

this approach, instead of asking for information updates the progress status is obtained in 

real time from positioned sensors or upon inspection from the drones. Next, the machine 

learning engine will merge the information (LiDAR, images, sensors) with BIM to 

identify the product progress and deviations from the specifications (similarly as in the 

SCADA). In parallel, the production information (progress and workers information) is 

checked against the production theory and models to evaluate productivity, forecast 

conclusion dates and assess corrective actions (as in APFPC). These two combined and 

jointly with the project plan are then presented to the ‘control room.’ Therefore, the 

‘control room’ can rely on accurate information in the decision-making process, which 

results in a data-driven continuous improvement loop (Figure 1). 

For instance, if a fixed camera detects that a disposal bin is being filled at a certain 

rate the replacement of that bin can be ordered from the control room without the 

worker’s requisition (that means eliminating the requisition task (Muda Level I), the work 

stoppage (Muda Level II) by waiting that the bin replacement or having to replace it 

(setup/cleaning, i.e., Muda Level I). And as Muda decreases Mura also decreases 

(Antunes et al. 2016). Similar reasoning works with suppliers. For example, if the casing 

were not cemented in place, the suppliers can be notified to avoid bringing more to the 

site. This integration with the supplier may avoid Muda (Level I) in one or more 

situations: inventory - use extra space to store more that its needed; waiting - if the trucks 

need to wait around the site; motion - case the truck needs to go back. Because 

information is compiled in the SCADA and centralized in the ‘control room’ it can be 

accessed and shared with ease, such as in a library. 
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Figure 1 Theoretical framework for an information integration system for construction 

CONCLUSIONS 

Cross-functional cooperation in construction is low mostly because the parts have no 

information about what is happening outside their area. The same can be said about 

suppliers. The establishment of the ‘control room’ centralizes information from the plan, 

labor, process, and production. Moreover, once the control-room has information about 

the progress of the current and next activities on-site, it will be able to coordinate cross-

functional activities and supply chain. 

Building information security and maintenance may use the product legacy 

information gathered in construction eliminating redundant work by analyzing the 

building. This work has already been done during construction (reducing over-

processing). There is a compiled log of who did what, when and how for every part of the 

building including divergences between the original design and every change and defect 

occurred during construction. There can be extensive details of how the process has been 

done (and evolved). The production knowledge has further benefits. Especially, due to 

the network effect. The network effect adds value to this framework with use and 

adoption. This means that data can be generalized to a broader audience with more 

information such as season of the year, weather condition, geo-localization, altitude, 
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winds, local culture, diversity, or any other feature. Hence, future endeavors will establish 

the production base-line using historical evidence rather than the usual labor/time 

relationship. 

Using the chrono-analysis continuous assessment jointly with the data (production 

progress and workers effort) from previous projects informal processes tends to be 

eliminated. Better processes are developed and standardized. More accurate historical 

information is persistent and can be generalized to different projects enabling comparison 

and continuous improvement methodologies from project to project. New builders will be 

trained in the benchmark process instead of the “I have been done this for the last x 

years” (and repeating the same mistakes over and over) approach. As such, the 

conservative company culture, lack of innovation and delayed adoption will be addressed 

by the marked. Companies will quantitatively assess and qualify the performance of 

contractors in previous projects. In an intensive third-party contracting industry such as 

construction, low productivity companies that often make mistakes are costly, and 

consequently, put at the end of the supplier's list or dismissed. Construction needs an 

increase in the number of builders, but it really needs builders with better performance. 

A more automated construction industry should experience a set of benefits, such as 

better decision-making processes, increase information flow, and increase productivity. 

These benefits have a collateral impact on the whole society. More productivity means 

that more projects can be done using fewer resources. Accordingly, more infrastructure 

can be built and maintained. It can increase the affordability of the housing prices. 
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