

PERFORMANCE MEASUREMENT IN LEAN PRODUCTION SYSTEMS: AN EXPLORATION ON REQUIREMENTS AND TAXONOMIES

KARINA BARTH – PhD Candidate at UFRGS CARLOS FORMOSO – Professor at UFRGS MARCUS STERZI – Senior Consultant at LD Consulting

4th July 2019

Aim of the study

Propose a set of **requirements** for **Performance Measurement Systems** (PMS) from a **lean production perspective** and a **taxonomy of metrics** for lean production systems.

 Based on the analysis of the Performance Measurement Systems of 5 South American construction companies involved in the implementation of the Lean Production philosophy.

Performance Measurement Systems

- Several previous studies are limited to the definition of performance measures
- Focus on Performance Measurement Systems:
 - Uses a set of indicators that **quantify the efficiency or effectiveness** of a process or organization
 - Involves an effort to fully integrate measures into process management
 - Defines procedures for data collection and processing, and protocols for distributing information (Neely et al., 1996)

Role of Performance Measurement Systems

In general (business management)

Provides the necessary information for **process** control

Enables the **establishment of challenging and feasible goals**

Helps to **align efforts and resources to the most important aspects of the business** (Lantelme and Formoso 2000)

Facilitates communication between different managerial levels (Hall et al. 1991)

Role of Performance Measurement Systems

In general (business management)	In the implementation of lean principles
Provides the necessary information for process control	Produces data that can be used as a reference for learning and process improvement (Pavlov and Bourne 2011)
Enables the establishment of challenging and feasible goals	Points out shortcomings as sources of creative tensions for continuous improvement (Spear and Bowen 1999)
Helps to align efforts and resources to the most important aspects of the business (Lantelme and Formoso 2000)	Provides focus on the lean goals, such as eliminate waste, reduce variability, and improve value generation (Koskela 1992)
Facilitates communication between different managerial levels (Hall et al. 1991)	Rendering invisible attributes of the process visible through measurements (Koskela 1992)

Drawbacks of Performance Measurement Systems

In general (business management)

- Use metrics strongly related to the traditional project management approach: cost deviation, productivity and utilization rates (Bhasin 2008; Maskell 1991)
- Compare task completion and quality data to the plan or budget - Thermostat model (Koskela and Howell 2002);
- Put to much effort on lagging indicators, ineffective to support timely decision making (Kennerley and Neely 2003; Sarhan and Fox 2013);
- Lack of prioritization regarding critical processes: too many measures (Bourne et al. 2000).

Drawbacks of Performance Measurement Systems

In general (business management)

- Use metrics strongly related to the traditional project management approach: cost deviation, productivity and utilization rates (Bhasin 2008; Maskell 1991)
- Compare task completion and quality data to the plan or budget **Thermostat model** (Koskela and Howell 2002);
- Put to much effort on lagging indicators, ineffective to support timely decision making (Kennerley and Neely 2003; Sarhan and Fox 2013);
- Lack of prioritization regarding critical processes: too many measures (Bourne et al. 2000).

In the implementation of lean production

- Most companies use only Last Planner related metrics (España et al. 2012; Sacks et al. 2017);
- Lack of intermediate metrics to assess the changes taking place in the effort to introduce lean production (Sánchez and Pérez 2001);
- Lack of measures **regarding supply chain integration** (Nudurupati, Arshada and Turner 2007);
- Too much effort on the application of tools that generate metrics, rather than considering them as countermeasures (Spear and Bowen 1999).

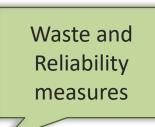
Types of Performance Measures in lean systems

Karlsson and Åhlström (1996)	Sánchez and Pérez (2004) and Rivera and Manotas (2014)	Koskela (1992)
Elimination of waste	Elimination of waste	Waste reduction
Continuous improvement	Continuous improvement	Continuous improvement
Zero defects		Variability reduction
Just In Time (JIT)	Continuous flow and Pull-driven systems	
Pull instead of push		
Multifunctional teams	Multifunctional teams	
Decentralized responsibility		
Integrated functions		
Vertical Information Systems	Information systems	
		Adding value
		Cycle time

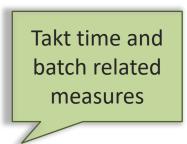
Cycle time Simplification and Transparency Focus on complete process

Companies studied

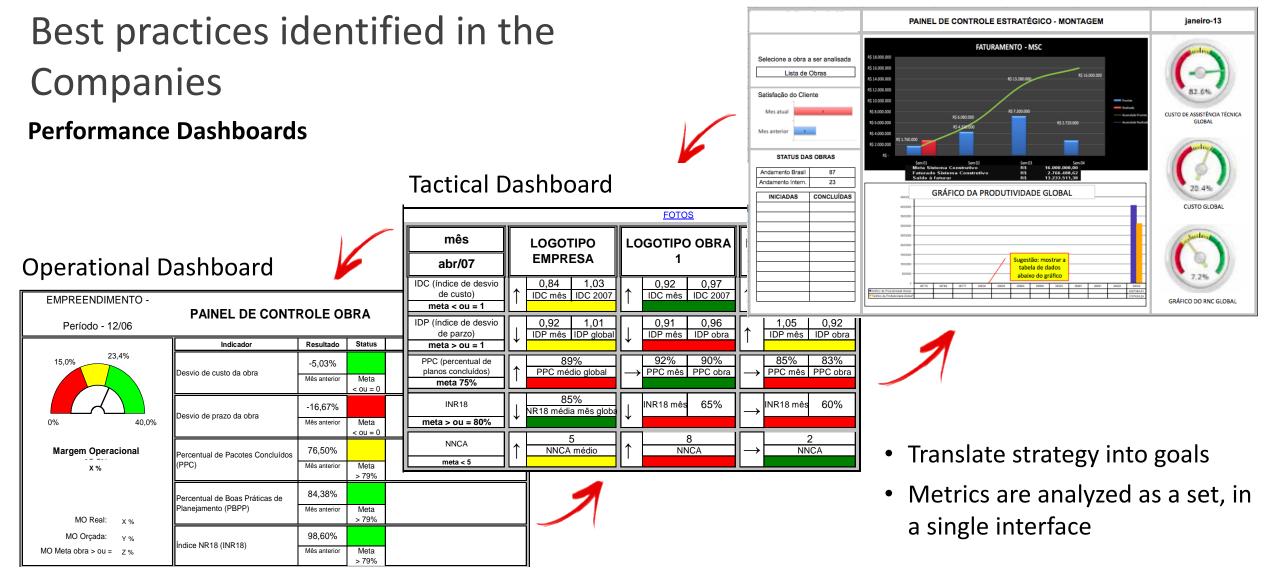
	Company A	Company B	Company C	Company D	Company E
Company	Large	Large	Small	Large	Large
size					
	Benchmark in Lean	Multinational Company,	Family company,	3 years lean	Works as a
Main	Construction,	complex projects,	3 years lean	implementation	contractor, various
characte-	30 years lean	20 years lean	implementation		projects, 5 years
ristics	implementation	implementation			lean implementation
Main lean practices adopted	 Last Planner Kanban 5S Prototyping Visual management 	 Last Planner Kanban Multi-function teams Visual management Standardized work 	 Last Planner Visual management Task completion control 	 Last Planner Visual Managemen 5S Task completion Takt-time planning 	 Last Planner Visual Management Takt-time planning
	- Standardized work	- Value Stream Mapping	- Takt-time planning		_


Indicators	Company A	Company B	Company C	Company D	Company E
Last Planner Metrics	Х	Х	х	х	x
Effectiveness of LPS Implementation	x		x	x	
Daily OTP (On Time Performance)		X			
Gemba Walk Wastes		х	х		
Number of Kaizen Ideas		x			
Sequence and WIP			х	х	
HeatMap				x	
Batch Adherence Control				x	X
Cycle Time				х	X
Control of Batch Deliverable Rhythm	X		Х	Х	X

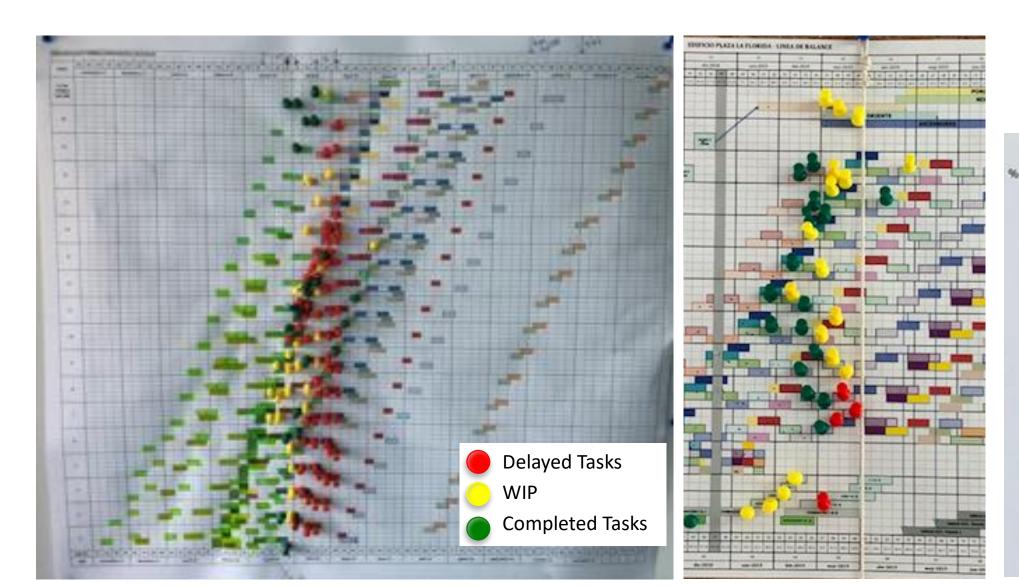
Last Planner related measures


Indicators	Company A	Company B	Company C	Company D	Company E
Last Planner Metrics	×	x	x	x	X
Effectiveness of LPS Implementation	X		x	x	1
Daily OTP (On Time Performance)		X			
Gemba Walk Wastes		x	×		;
Number of Kaizen Ideas		x			
Sequence and WIP			x	x	
HeatMap				x	
Batch Adherence Control				x	x
Cycle Time				x	x
Control of Batch Deliverable Rhythm	Х		Х	Х	Х

Indicators	Company A	Company B	Company C	Company D	Company E
Last Planner Metrics	х	х	х	х	x
Effectiveness of LPS Implementation	x		x	x	
Daily OTP (On Time Performance)		Х			
Gemba Walk Wastes		x	×		
Number of Kaizen Ideas		x			į
Sequence and WIP			x	x	
HeatMap				x	:
Batch Adherence Control				×	x
Cycle Time				x	x
Control of Batch Deliverable Rhythm	Х		Х	Х	x



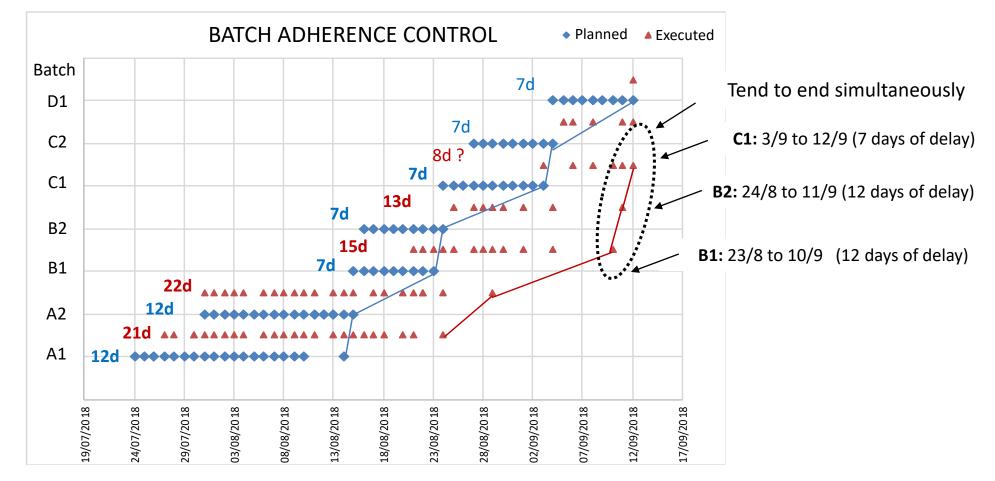
Indicators	Company A	Company B	Company C	Company D	Company E
Last Planner Metrics	х	x	x	х	X
Effectiveness of LPS Implementation	x		x	x	
Daily OTP (On Time Performance)		X			
Gemba Walk Wastes		х	х		
Number of Kaizen Ideas		x			
Sequence and WIP			x	x	
HeatMap				x	
Batch Adherence Control				<u>x</u>	×
Cycle Time				x	х
Control of Batch Deliverable Rhythm	X		X	Х	X

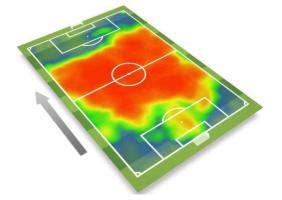


Strategic Dashboard

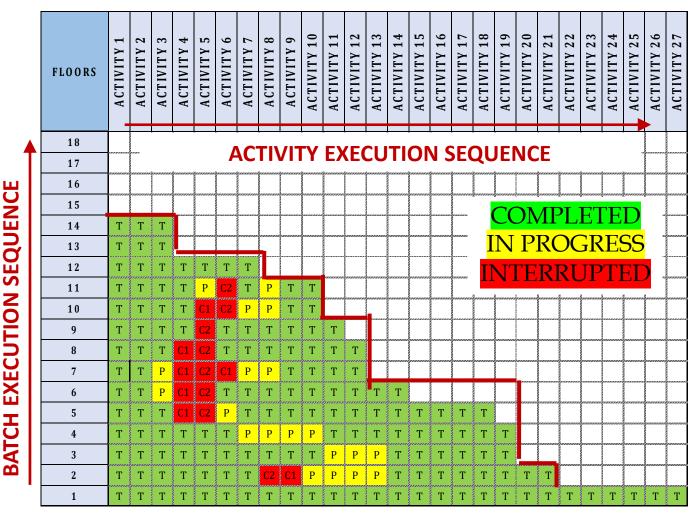
Best practices identified in the Companies

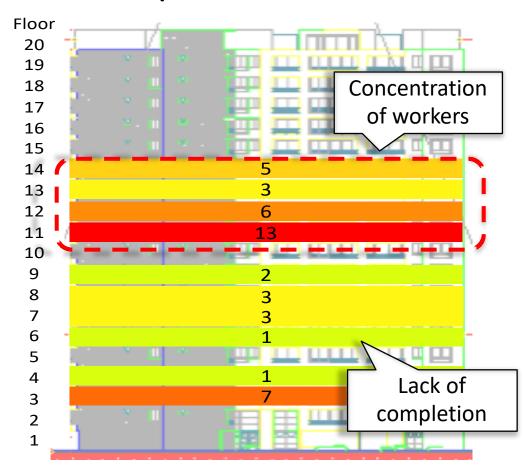
Visual monitoring of WIP by using the Line of Balance





Best practices identified in the Companies


Control of Batch Adherence and Cycle Time


Best practices identified in the Companies

Sequence and WIP

Heatmap: shows number of workers

Requirements: initial propositions for PM Systems Based on literature and practice

- 1. Have a direct alignment with higher goals (e.g. company strategy or lean ideals)
- 2. Combine leading and lagging indicators
- 3. Create local control systems: local concepts (e.g. kaizen ideas) and adapted to specific contexts PM system should be revised in order to meet the requirements of each situation.
- 4. **Be updated from time to time** (as result of learning) PM system must keep pace with changes in the production system.
- 5. Be simple (easy to understand) and provide quick feedback to users

Clear and simple information **facilitates problem detection**, allowing decision-making and actions to be performed shortly.

6. Promote improvement and learning, e.g. by increasing process transparency.

Critical analysis

Analysis of the Propositions in the companies studied

Requirements Proposed	Company A	Company B	Company C	Company D	Company E
Have a direct alignment with higher goals	+/-	+	+/-	+/-	+/-
Combine leading and lagging indicators	+	+	+/-	+	+/-
Create local control systems	+/-	+/-	-	-	+/-
Be updated from time to time	+	+/-	+/-	-	-
Be simple and provide quick feedback to users	+	+	+	+	+
Promote improvement and learning	+	+	+/-	+	+/-

Proposed Taxonomy for Performance Measurement in LPS Based on literature and practice

Lean main objectives	Means
	Continuous Improvement and learning
Waste Elimination	Just In Time
	Process Reliability (Quality and Time)
Value Generation	Resilience (Safety)
	Supply Chain Integration
	Collaboration and empowerment

Proposed Taxonomy for Performance Measurement in LPS

Based on literature and practice

Lean main objectives	Lean main objectives Means	
	Continuous Improvement and learning	Daily OTP (On Time Performance) WIP and Sequence HeatMap
Waste Elimination	Just In Time	Rhythm Deviation Batch Adherence Control
Gemba Walk Wastes	Process Reliability (Quality and Time)	Cycle Time
Value Generation	Resilience (Safety)	
	Supply Chain Integration	Number of Kaizen Ideas
	Collaboration and empowerment	

Proposed Taxonomy for Performance Measurement in LPS

Based on literature and practice

Lean main objectives	Lean main objectives Means	
	Continuous Improvement and learning	Daily OTP (On Time Performance) WIP and Sequence HeatMap
Waste Elimination	Just In Time	Rhythm Deviation Batch Adherence Control
Gemba Walk Wastes	Process Reliability (Quality and Time)	Cycle Time
Value Generation	Resilience (Safety)	
	Supply Chain Integration	Number of Kaizen Ideas
	Collaboration and empowerment	

Conclusion and further work

- Previous studies have proposed metrics for Lean Production Systems, but most of them do not suggest guidelines for devising Performance Measurement Systems
- There is a **tension between improving Performance Measurement**, and increasing the **effort involved** in data collection and processing (non-value-adding, and may cause dissatisfaction)
- A set of requirements have been proposed for making Performance Measurement Systems more effective (rather than simply increasing the number of metrics)

- Some improvement opportunities were identified: e.g. alignment with higher goals, creating local control systems, and keeping the PMS updated

• Performance Measurement for production control in some construction companies is often limited to Last Planner or Takt Time Planning (process reliability)

- Based on the proposed taxonomy, some gaps were identified: e.g. Value Generation, Resilience, JIT, Collaboration and empowerment, Supply Chain Integration

Thank you!