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 Envelopment Methodology to Measure and Compare 
Subcontractor Productivity at the Firm Level 

Mohammad El-Mashaleh1, William J. O’Brien2, Kerry London3 

ABSTRACT 

This paper describes a conceptual approach to measure and compare productivity of resource 
utilization at the firm level, adapting a set of techniques known as Data Envelopment 
Analysis (DEA). Within this approach, the paper addresses the issues of multiple inputs and 
multiple outputs of a construction firm, level of detail for data collection, and the required 
transformations to correct for differences among projects. In particular, we focus on the 
resource management of subcontractors. Subcontractors manage multiple, concurrent 
projects and must allocate limited resources across these projects. Interaction between 
projects and resource allocation creates non-linear effects, and therefore the productivity of 
the firm is not simply the productivity of its projects. The proposed measurement 
methodology will allow assessment of the impact of different management policies 
(including many of those proposed by lean construction researchers) on firm performance. It 
is hoped that this novel approach to productivity measurement will help subcontractors 
identify efficient practices and superior management policies, and will promote adoption of 
these policies. 
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INTRODUCTION 

Construction subcontractors face unique production challenges. Not only must they face a 
changing set of production problems on individual projects, they need to manage their finite 
resources simultaneously across many projects. That each of these projects has changing 
demand for resources in both quantity and time makes the job of managing subcontractor 
operations extremely difficult. Managers must take a multi-project perspective, seeking to 
optimize use of resources at the firm level. This is not simply a matter of optimizing 
activities on individual projects; the discretion of managers to reallocate resources among 
projects creates non-linear effects and, hence, production decisions must be considered at the 
firm level (O'Brien 1998, O'Brien et al. 1995). Unfortunately, construction research has all 
but ignored the firm or multi-project perspective when developing models to aid decision 
makers. Similarly, models used by practitioners (e.g., project costing methods) stem from a 
single-project perspective and do not directly support subcontractor resource allocation 
decisions across projects.  Such decisions are made heuristically, and we lack formal models 
to guide practitioners (O'Brien 2000). 

Concurrent with a lack of models, construction research lacks a measurement method to 
compare the performance of subcontractors at the firm level. Researchers have a long 
tradition of measuring productivity at the industry or macro-economic level, typically making 
a longitudinal study of productivity trends (e.g., Bon and Pietroforte 1990), but this high-
level analysis does not provide an indication of firm level performance. At the micro-level, 
there is a vast literature studying productivity at the level of individual projects and project 
activities (e.g., Goodrum et al. 2000; Thomas and Yiakoumis 1987). This literature studies 
various influences on productivity both longitudinally and as cross-section studies among 
contemporaneous projects and/or activities. Man-hours employed and work produced are 
measured and compared to the past or compared with other firms to obtain measurements of 
how efficient a firm is in its activities.  

These are unsatisfactory measures of firm level performance as they do not incorporate 
all inputs and all outputs. There are “total factor” measures of productivity that relate the 
performance of all inputs to all outputs. There are also “partial factor” measures of 
productivity that typically relate a single input to output (Link 1987). The scope of most 
construction productivity research has been to focus on partial measures, principally labor. 
While useful at the activity level, partial factor metrics are limited. In particular, they do not 
address complex interactions between different factors both within and across the projects a 
firm is working on. Thomas and Yiakoumis’ (1987) propose a (total) Factor Model to 
measurement of productivity on activities. They suggest that several influences on 
productivity (e.g., skill level, weather, site conditions, management, etc.) are separable and 
additive in nature. Their model does not address interactions within and across projects and 
hence is not applicable at the firm level. However, their work can be viewed as an important 
pre-cursor to the proposed methodology in this paper. 

This lack of a firm level productivity measurement methodology for subcontractors is a 
serious gap in construction research that likely retards industrial adoption of new methods. 
We claim that a measure of productivity at the firm level has a host of benefits, as it: 
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• Supports subcontractors’ management decisions about resource utilization across projects 
for the most return. 

• Supports decisions about investment in resources and in mix of projects. 
• Supports benchmarking, allowing subcontractors to better understand their competitive 

position and improve their performance. 
• Supports comparative research of various management policies. 

In particular, a firm level productivity measurement methodology allows empirical 
evaluation of improved management policies promoted by lean construction researchers. For 
example, Last Planner and production shielding (Ballard and Howell 1998) are productivity 
improvement techniques built on the project and activity level. While these techniques have 
proven useful, there is no methodology that can relate the activity and project level 
performance to firm performance. The methodology envisioned in this paper would allow 
such an evaluation, allowing comparison of, for example, different variations of Last Planner 
implementations in sheet metal subcontractors.  

A strong motivation for the need for a reliable firm-level productivity metric comes from 
the International Motor Vehicle Program (IMVP) study that resulted in the famous book The 
Machine That Changed the World (Womack et al. 1990). This book documented the 
productivity improvements that came with lean production. These documented improvements 
were a major catalyst for the widespread adoption of those techniques by the automobile 
industry. Krafcik (1988) developed the assembly plant productivity measurement methods 
for the study, guided by “the need for the development of methods which would permit 
accurate assessments of assembly plant performance and aid the identification of superior 
manufacturing practices in the automotive industry.” The study collected data from 60 
assembly plants in 15 countries, representing almost a third of world automotive assembly 
capacity. The IMVP study is useful as a practical example of the methodological difficulties 
involved in comparing performance at the firm level, in particular the need for an “apples-to-
apples” comparison of technologies. Krafcik addressed this problem using a series of 
conversion factors, scaling the output of each plant to a standard compact car.  

Unfortunately, subcontractor production is not so easily converted to a single standard 
output. Although specialist firms, subcontractors produce a range of outputs on unique 
projects, with influencing factors harder to control than a factory environment. Similarly, the 
range of inputs to subcontractor production is on the same order of magnitude as that of an 
assembly plant. Thus a productivity measurement methodology to evaluate subcontractor 
performance at the firm level needs to be significantly more robust than the methods 
employed in the IMVP study. We propose in this paper that a set of non-parametric, frontier 
evaluation methods known as Data Envelopment Analysis (DEA) is sufficiently powerful to 
accommodate the measurement challenge posed by subcontractor production. In the 
following sections, we describe DEA, its applicability to measuring subcontractor 
productivity at the firm level, and several research issues that must be addressed to fully 
adapt DEA as a construction measurement tool. 
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FRONTIER PRODUCTIVITY AND DATA ENVELOPMENT ANALYSIS 

The IMVP study is a benchmarking study and can be considered a form of frontier analysis 
in that it identified best practices (i.e., the frontier) and measured other performance relative 
to best practice. Farell (1957) in his pioneering work on productive efficiency through 
frontier analysis, proposed the notion of the structural efficiency of an industry. Structural 
efficiency is essentially an indication of the dispersion of overall efficiency among the 
constituent firms in an industry. It measures the extent to which an industry keeps up with the 
performance of its own most efficient firms. The Farell approach utilizes the classic 
econometric production function as its measurement base and estimates the relative level of a 
firm’s efficiency by where it is positioned within the production “frontier.” This approach 
enables firms to assess their relative efficiencies vis-à-vis other firms in the industry.  
Farrell’s work and subsequent development provides a rich theoretical and methodological 
basis from which to develop measures of firm level performance able to address the 
difficulties posed by subcontractor production. 

 In particular, we believe a generalization of Farell’s framework by Charnes, Cooper, and 
Rhodes (1978) can be adapted for use in construction. The Charnes, Cooper, and Rhodes 
(CCR) model reformulated Farrell’s model as a mathematical programming approach that 
can accommodate multiple outputs. The CCR approach initiated development of a broader 
set of non-parametric, mathematical programming efficiency measurement methods 
collectively known as Data Envelopment Analysis (DEA). DEA is concerned with 
evaluations of performance and it is especially concerned with evaluating the activities of 
organizations such as business firms, hospitals, government agencies, etc. In DEA, the 
organization under study is called a DMU (Decision Making Unit). A DMU is regarded as 
the entity responsible for converting inputs into outputs and whose performance is to be 
evaluated. DEA utilizes mathematical linear programming to determine which of the set of 
DMUs under study form an envelopment surface. This envelopment surface is referred to as 
the empirical production function or the efficient frontier. DEA provides a comprehensive 
analysis of relative efficiency for multiple input-multiple output situations by evaluating each 
DMU and measuring its performance relative to this envelopment surface. Units that lie on 
(determine) the surface are deemed efficient in DEA terminology. Units that do not lie on the 
surface are termed inefficient and the analysis provides a measure of their relative efficiency. 

For illustration, we provide the following simple example. Table 1 lists the performance 
of 9 steel subcontractors each with two inputs and one output. Input x1 is the number of labor 
hours, Input x2 is the number of welding machine hours. Output y represents tons of open 
web joists installed in place.  
 

Table 1: Steel subcontractors example 1 
Subcontractor A B C D E F G H I 
Labor hrs (x1) 4 7 8 4 2 5 6 5.5 6 
Equip. hrs (x2) 3 3 1 2 4 2 4 2.5 2.5 
Open web joists in tons (y) 1 1 1 1 1 1 1 1 1 
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Figure 1 plots the subcontractors Input x1/Output y and Input x2/Output y as axes. From 
the efficiency point of view, it is natural to judge subcontractors that use fewer inputs to get 
one unit of output as more efficient. We therefore identify the line connecting C, D, and E as 
the “efficient frontier.” This frontier should touch at least one point and all points are 
therefore on or above (in this case) this line. Note that we can “envelop” all the data points 
within the region enclosed by the frontier line, the horizontal line passing through C and the 
vertical line through E. The “enveloped” region is called the “Production Possibility Set.” 
This means that the observed points are assumed to provide empirical evidence that 
production is possible at the rates specified by the coordinates of any point in the region. 

 
Figure 1: Steel subcontractors’ efficiency (example 1) 

 
 
The efficiency of subcontractors not on the frontier can be measured by referring to the 

frontier point as follows. For example, subcontractor “A” is inefficient. To measure its 
inefficiency (see Figure 2), let OA, the line from zero to A, cross the frontier line at P. Then, 
the efficiency of A is to be evaluated by : OP/OA = 0.8571. This means that the inefficiency 
of A is to be evaluated by a combination of D and E because the point P is on the line 
connecting these two points. D and E are called the “reference set” for A. The reference set 
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for an inefficient subcontractor may differ from one to another. For example, B has the 
reference set composed of C and D in Figure 2. 

Now we extend our analysis to identify improvements by referring inefficient behaviors 
to the efficient frontier. From Figure 2, subcontractor A for example, can be effectively 
improved by movement to P with Input x1 = 3.4 and Input x2 = 2.6. More broadly, the firm 
can improve its efficiency by adjusting its input mix towards its reference set (D and E in this 
example). In the same sense subcontractor B can be improved by movement to Q with Input 
x1 = 4.4 and Input x2 = 1.9. 

 

 
Figure 2: Efficiency of subcontractors “A” and “B” 

 
 

DEA IN MORE COMPLEX APPLICATIONS 

Our example above is simple and does not capture the complexities of the construction 
environment. However, DEA capabilities and successful deployment in other industries 
suggest that it is well suited to address the complexity of measuring construction 
subcontractor productivity. Cooper et al. (2000) argue that DEA has opened up possibilities 
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for use in cases which have been resistant to other approaches because of the complex nature 
of the relations between the multiple inputs and multiple outputs involved in many of these 
activities. DEA has also been used to supply insights into benchmarking practices. Cooper et 
al. provide instances where DEA has identified numerous sources of inefficiency in some of 
the most profitable firms – firms that served as benchmarks by reference to their profitability 
criterion. DEA’s empirical, non-parametric approach does not require the foreknowledge of 
the production function, but rather allows the determination of an upper boundary for that 
function. The absence of a priori assumptions in DEA provides it with the flexibility to be 
used in the construction industry. In sharp contrast to parametric approaches, the weights of 
the several inputs and several outputs are derived directly from the data, and the user is not 
required to assign any weights for those inputs and outputs. More importantly, DEA can 
easily incorporate multiple inputs and multiple-outputs. Thus, it allows the consideration of 
all resources and production of a construction subcontractor. The use of linear programming 
provides DEA with the capability to handle large numbers of variables and relations 
(constraints) and this relaxes the requirements that are often encountered when one is limited 
to choosing only a few inputs and outputs because the techniques employed will otherwise 
encounter difficulties. This DEA multiple input, multiple output capability is depicted in 
Figure 3. A top-front view and a bottom-rear view for a three-dimensional envelopment 
surface are plotted. The envelopment surface consists of hyperplanes that form particular 
facets of a convex hull. As mentioned earlier, the efficient DMUs form the envelopment 
surface and the inefficient DMUs lie below this envelopment surface. 

 
 

 
 

Figure 3: Three-dimensional envelopment surface (Ali and Seiford 1993, p.123), 
demonstrating DEA capabilities to scale to multi-dimensional inputs and outputs  

 
 
DEA models are either input-oriented or output-oriented. For an input-oriented 

projection, one seeks a projection such that the proportional reduction in inputs is maximized 
(i.e., by how much can input quantities be proportionally reduced without changing output 
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quantities?). Similarly, for the output-oriented projection, one seeks a projection such that the 
proportional augmentation in outputs is maximized (i.e., by how much can output quantities 
be proportionally expanded without changing input quantities?). Coelli et al. (1998) and 
Lovell (1993) argue that linear programming does not suffer from such statistical problems 
as simultaneous equation bias, the choice of an appropriate orientation is not as crucial as it is 
in econometric estimation. Thus, for example, if producers are required to meet market 
demands, and if they can freely adjust input usage, then an input-oriented model seems 
appropriate. Essentially, one should select the orientation according to which quantities 
(inputs or outputs) the managers have most control over. Figure 1 shows the input-oriented 
model for the steel subcontractor example 1, while Figure 4 shows the output-oriented model 
for the same example. In contrast to the input-oriented model, the output-oriented model uses 
Output/Input1 and Output/Input2 as axes. As a result, the inefficient subcontractors lie below 
the efficient frontier. 
 
 

 
Figure 4: Output-oriented model for the steel subcontractor example 1 
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Additional features of DEA that makes it plausible for use in the construction industry lie 

in its ability to accommodate both categorical variables and non-discretionary variables. 
Frequently, an input or output variable may reflect the presence or the absence of a particular 
situation (e.g., a subcontractor is working in a certain region in the United States or not). In 
such situations, one may wish to ensure that a subcontractor is compared with subcontractors 
that work in the same region under the same weather conditions, and are subjected to the 
same applicable codes for example. Ali and Seiford (1993) provide another example for the 
use of categorical variables, where branches of a bank are being compared. Some branches 
have a drive-in facility, while other branches do not have such a facility. Clearly, it would be 
a cleaner comparison if the group of DMUs consisted only of branches with a drive-in 
facility. However, Ali and Seiford (1993) argue that the use of categorical (input or output) 
variables allows the incorporation of such binary factors and can improve the construction of 
the efficient frontier. 

Non-discretionary variables are variables over which a DMU has no control. In some 
instances, a subcontractor may not be able to alter some input quantities. That is, these input 
quantities cannot be varied at the discretion of the subcontractor but nevertheless need to be 
taken into account in arriving at relative efficiency evaluations. For example, number of non-
working days because of weather conditions, etc. Since these variables are not under the 
control of the subcontractor, it makes no sense to minimize their input quantities. Banker and 
Morey (1986) utilize the non-discretionary variables in analyzing a 60-DMU network of fast 
food restaurants. Six inputs are considered: expenditures for supplies and materials, 
expenditures related to labor, age of store, advertising expenditures allocated to store by 
headquarters, presence/absence of drive-in window, and location in urban versus rural area. 
Only the first two inputs are under the control of the individual restaurant manager. Thus, 
information concerning efficiency gains stemming from reduction in these expenditures 
would be useful as a management tool.  Information about gains from reduction in the non-
discretionary inputs is less useful for operations. Fortunately, DEA techniques can address 
these differences in inputs. 
 
 
METHODOLOGY TO MEASURE AND COMPARE SUBCONTRACTOR 
PRODUCTIVITY AT THE FIRM LEVEL 

In this section, we present the CCR-model (Charnes, Cooper, and Rhodes, 1978) of DEA to 
demonstrate some of the technical details involved and to motivate further research. In 
particular, we focus on the dual of the CCR-model to measure and compare subcontractor 
productivity at the firm level. Building from the example in section 2, we model construction 
subcontractors as multiple-input, multiple-output Decision Making Units (DMUs) that 
attempt to minimize their inputs for given outputs. As such, our model takes an input-
oriented rather than an output-oriented approach. 

Suppose we have n DMUs with m input items and s output items. Let the input and 
output data for DMUj be (x1j, x2j,……….., xmj) and (y1j, y2j,……….., ys j), respectively. 
Therefore, the input data matrix X is an (m×n) matrix and the output data matrix is an (s×n) 
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matrix. For each DMU, we form the virtual input and output by (yet unknown) weights (vi) 
and (ur): 

Virtual input = v1 x1 + v2 x2 +…………+ vm xm 
Virtual output = u1 y1 + u2 y2 + ………..+ us ys 

Given the data, we measure the efficiency of each DMU once and hence, we need n 
optimizations, one for each DMUj  to be evaluated. Let the DMUj  to be evaluated on any 
trial be designated as DMU° where ° ranges over 1, 2, ……….., n. We solve the following 
fractional programming problem to obtain values for the input “weights” (vi) (i = 1,…., m) 
and the output “weights” (ur) (r = 1,….., s) as variables. 
(FP°)   
max            θ = (u1 y1° + u2 y2° + ………..+ us ys°)/ (v1 x1° + v2 x2°+……..+ vm xm°) 
Subject to  (u1 y1j + …………….+ us ys j) / (v1 x1j +…………+ vm xmj) ≤ 1 (j = 1,…., n) 
                  v1, v2,………… vm ≥ 0 
                  u1, u2, ………… us ≥ 0 
The FP attempts to maximize the objective function θ, which is the ratio of “virtual output” 
to “virtual input.”  This maximization is achieved by holding the outputs constant, while 
minimizing the inputs; a fact that will become clear when we discuss the dual. The 
constraints of the FP mean that this ratio should not exceed 1 for every DMU. The resulted 
weights (vi) and (ur) from FP maximize the output to input ratio of DMU°, the DMU being 
evaluated. By virtue of the constraints, the optimal objective value θ = θ* is at most 1.  

The above fractional program (FP°) is non-linear. As such, linear programming can not 
be used to solve it. We therefore replace the (FP°) with the following linear program (LP°), 
which is called the CCR-model: 
(LP°) 
max                         θ = (u1 y1° + u2 y2° + ………..+ us ys°) 
subject to               (v1 x1° + v2 x2°+……..+ vm xm°) = 1 

                        (u1 y1j + ………+ us ys j) ≤  (v1 x1j +……+ vm xmj) (j = 1,…., n) 
                        v1, v2,………… vm ≥ 0 
                        u1, u2, ………… us ≥ 0 

The objective function of the LP is to maximize θ, which reflects the output of DMU°. The 
input of  DMU° was set as a constraint that is equal to 1. The other constraint indicates that 
the outputs of  the rest of the DMUs do not exceed their inputs. Clearly, the optimal value of 
θ = θ* ≤ 1. 

Let us suppose we have an optimal solution of (LP°) which we represent by (θ* ,  v* ,  u*). 
We can then identify whether (DMU°) is CCR-efficient or not as follows: 
1. (DMU°) is CCR-efficient if θ* =1 and there exists at least one optimal ( v* , u*) with v* > 

0 and  u*> 0. This simply means that DMU° is on the efficient frontier. Compared to the 
rest of the DMUs, DMU° effectively converts its inputs into outputs. 

2. Otherwise, DMU° is CCR-inefficient. 
It is important to note here that the measures of efficiency presented above for both the (FP°) 
and the (LP°) are “units invariant.” In other words, they are independent of the units of 
measurement used. Thus, for the steel subcontractors in example 1, one firm can measure the 
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output in tons and the inputs in working hours while another measures these same output and 
inputs in linear foot and working days respectively. They will nevertheless obtain the same 
efficiency value. 

In linear programming terminology, every LP has a counterpart that is called the dual. 
When taking the dual of a given LP, we refer to the given LP as the primal. If the primal is a 
maximization problem, the dual will be a minimization problem, and vice versa. The 
importance of the dual lies in its ability to provide additional economic insights. In our case, 
the dual enables us to determine all input excesses and output shortfalls. Based in the 
preceding discussion, the CCR-efficiency model was formulated as an LP problem with row 
vector v for inputs and row vector u for outputs. Both u and v are treated as variables in the 
following primal LP problem, which is presented in vector-matrix notation: 
(LP°)                     max  uy° 
subject to               vx° = 1 

                       -v X + u Y ≤ 0 
                        v  ≥ 0,  u ≥ 0 

The dual problem of (LP°) is expressed with a real variable θ and a nonnegative vector λ = 
(λ1, λ2, ……, λn)T  of variables as follows: 
(DLP°)                       min θ 
subject to                   θ x°    -    X λ ≥ 0 

                                           Y λ   ≥ y°      
                                                 λ ≥ 0 

Table 2 shows correspondences between the primal (LP°) and the dual (DLP°). 
 

Table 2: Primal and dual correspondences 
Source: Cooper, et al. (2000, p.44) 

Constraint 
(LP°) 

Dual variable 
(DLP°) 

Constraint 
(DLP°) 

Primal variable 
(LP°) 

vx° = 1 θ θ x°    -    X λ ≥ 0 v  ≥ 0 
-v X + u Y ≤ 0 λ ≥ 0 Y λ   ≥ y° u ≥ 0 
 
(DLP°) has a feasible solution θ =1, λ° =1, λj = 0 (j ≠ °). Hence the optimal θ denoted by θ*, 
is not greater than 1. To convert the above inequalities into equalities, we introduce the input 
excesses s- and the output shortfalls s+ and define them as “slack” vectors. 
(DLP°)                       min θ 
subject to                   θ x°    -    X λ - s-   = 0 

                                            Y λ - s+  = y°      
                                 λ ≥ 0,  s-  ≥ 0,   s+ ≥ 0 

To discover the possible input excesses and output shortfalls, we solve the following two-
phase LP problem: 
(DLP°)                        
Phase 1                     min θ 
Phase 2                     min  - s- -  s+   
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subject to                  θ x°  -    X λ  -   s-  =  0  
                           Y λ  +  s+               =  y°    
                       θ ≥ 0  λ ≥ 0,  s-  ≥ 0,   s+ ≥ 0 

The objective of phase 2 is to find a solution that maximizes the sum of input excesses and 
output shortfalls while keeping θ = θ* . An optimal solution (θ* , s-*, s+* )  of phase 2 is called 
the max-slack solution. If the max-slack solution satisfies s-* = 0 and  s+* = 0 , then it is called 
zero-slack.  If an optimal solution (θ* , λ*  ,s-*, s+* ) of the two LPs above satisfies θ* =1,  and 
is zero-slack (s-*= 0,  s+* = 0), then the DMU° is called CCR-efficient. Otherwise, the DMU° 
is called CCR-inefficient. For an inefficient DMU°., we can use the following CCR 
projection formulas to calculate the improved input and improved output: 
Improved input                   x°  =    θ* x° -  s

-*   
Improved output                 y°  =        y° +  s+*   

The above two-phase LP problem is our proposed model to measure and compare 
subcontractor productivity at the firm level. For illustration, we utilize the steel 
subcontractors example after modifying the inputs of subcontractors F and G and excluding 
subcontractors H and I as shown in Table 3. The results of this example are shown in Table 
4.  

Table 3: Steel subcontractors example 2 
Subcontractor A B C D E F G 
Labor hrs (x1) 4 7 8 4 2 10 3 
Equip. hrs (x2) 3 3 1 2 4 1 7 
Open web joists in tons (y) 1 1 1 1 1 1 1 

 
Table 4: Steel subcontractors example 2 results* 

Excess Subcontractor CCR-
Efficiency 

Reference 
set s1

- s2
- 

Shortfall 
s+ 

A 0.8571 D, E 0 0 0 
B 0.6316 C, D 0 0 0 
C 1.0 C 0 0 0 
D 1.0 D 0 0 0 
E 1.0 E 0 0 0 
F 1.0 C 2 0 0 
G 0.6667 E 0 0.6667 0 

* Results were obtained using the DEA-Solver software (Cooper et al., 2000) 
 
In the following discussion, we only explain the results of subcontractors A, B, and F. 
 (DLP) for A is: 
Phase 1                        min  θ 
Phase 2                        min  - s1

-  - s2
- - s+   

Subject to 
                                    4 θ - 4 λA – 7 λB – 8 λC – 4 λD – 2 λE – 10 λF – 3 λG - s1

- = 0 
                                    3 θ - 3 λA – 3 λB –  λC – 2 λD – 4 λE –  λF – 7 λG - s2

- = 0 
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                                    λA + λB +  λC +  λD + λE +  λF + λG - s+ = 1 
                                    all variables are nonnegative 
The optimal solution for (DLP)A is: 
θ* = 0.8571 
λ*

D = 0.7143,  λ*
E = 0.2857, other λ*

j = 0 
s1

-* = s2
-* = s+* = 0 

v1
* = 0.1429, v2

* = 0.1429, u1
* = 0.8571 

θ* = 0.8571< 1, therefore, subcontractor A is inefficient. Since  λ*
D > 0 and  λ

*
E > 0, the 

reference set for A is EA = {D, E}. 
λ*

D =0.7143 and  λ*
E = 0.2857 show the proportions contributed by D and E to the point used 

to evaluate A. As we mentioned earlier, subcontractor A can be brought to the efficient 
frontier by using the CCR-projection formulas: 

Improved input 1 of subcontractor A =  θ* x1 - s1
-* = 0.8571 (4) – 0 = 3.42 labor hrs (14.5% 

reduction). 
Improved input 2 of subcontractor A =   θ* x2 - s2

-* = 0.8571 (3) – 0 = 2.57 equip. hrs 
(14.5% reduction). 

 Improved output =  y +  s+* = 1 + 0 = 1 (no change) 
 
The same results are achieved using λ*

D = 0.7143 and  λ
*
E = 0.2857 as follows: 

 Improved input 1 of subcontractor A  =  λ*
D * input 1 of D + λ*

E * input 1 of E  
= 0.7143 * 4 + 0.2857 * 2 = 3.42 labor hrs 

 Improved input 2 of subcontractor A  =  λ*
D * input 2 of D + λ*

E * input 2 of E  
= 0.7143 * 2 + 0.2857 * 4 = 2.57 equip. hrs 

 
Again, we can obtain the same results by utilizing the input weights (v1

* = 0.1429 and v2
* = 

0.1429) and the output weight (u* = 0.8571). 
 v1

* x1 = (0.1429) (4) = 0.58, therefore the improved input = 4 - 0.58 =  3.42. 
 v2

* x2 = (0.1429) (3) = 0.43. The improved input = 3 – 0.43 = 2.57.   
 
(DLP) for B is: 
Phase 1                        min  θ 
Phase 2                        min  - s1

-  - s2
- - s+   

Subject to 
                                    7 θ - 4 λA – 7 λB – 8 λC – 4 λD – 2 λE – 10 λF – 3 λG - s1

- = 0 
                                    3 θ - 3 λA – 3 λB –  λC – 2 λD – 4 λE –  λF – 7 λG - s2

- = 0 
                                    λA + λB +  λC +  λD + λE +  λF + λG - s+ = 1 
                                    all variables are nonnegative 
 
The optimal solution for (DLP)B is: 
θ* = 0.6316 
λ*

C = 0.1053,  λ
*

D = 0.8947, other λ*
j = 0 
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s1
-* = s2

-* = s+* = 0 
θ* = 0.6316< 1, therefore, subcontractor A is inefficient. Since  λ*

C > 0 and  λ*
D > 0, the 

reference set for B is EB = {C, D}. 
Improved input 1 of subcontractor B =  θ* x1 - s1

-* = 0.6316 (7) – 0 = 4.42 labor hrs (36.8% 
reduction). 
Improved input 2 of subcontractor B  =   θ* x2 - s2

-* = 0.6316 (3) – 0 = 1.89 equip. hrs (36.8% 
reduction). 
Improved output =  y +  s+* = 1 + 0 = 1 (no change). 
(DLP) for F is: 
Phase 1                        min  θ 
Phase 2                        min  - s1

-  - s2
- - s+   

Subject to 
                                    10 θ - 4 λA – 7 λB – 8 λC – 4 λD – 2 λE – 10 λF – 3 λG - s1

- = 0 
                                     θ - 3 λA – 3 λB –  λC – 2 λD – 4 λE –  λF – 7 λG - s2

- = 0 
                                    λA + λB +  λC +  λD + λE +  λF + λG - s+ = 1 
                                    all variables are nonnegative 
The optimal solution for (DLP)F is: 
θ* = 1 
λ*

C = 1, other λ*
j = 0 

s1
-* = 2,  s2

-* = s+* = 0 
s1

-* = 2, therefore subcontractor F is inefficient. Since  λ*
C > 0, the reference set for F is EF = 

{C}. 
Improved input 1 of subcontractor F =  θ* x1 - s1

-* = 1.0 (10) – 2 = 8 labor hrs (20%   
reduction). 

Improved input 2 of subcontractor B  =   θ* x2 - s2
-* = 1.0 (1.0) – 0 = 1.0 equip. hrs (no 

change). 
Improved output =  y +  s+* = 1 + 0 = 1 (no change). 

 
From Table 4, subcontractors C, D, and E have θ* = 1, and s1

-* =  s2
-* = s+* = 0. These 

subcontractors satisfy θ* =1 and the zero-slack (s-*= 0,  s+* = 0) criteria, and are therefore 
claimed CCR-efficient. 
 
5.0 Research Challenges 

In the preceding sections, we presented two trivial examples to introduce the basic idea 
behind the DEA terminology and the CCR-model. However, both examples are far from 
depicting the complexity faced when measuring productivity at the firm level in the 
construction industry. Adopting DEA is not straight forward, but rather complicated. The 
following discussion addresses three issues that should be resolved before DEA can be 
implemented for firm level subcontractor productivity measurement. 
• Level of detail for data collection 

Construction productivity data can be aggregated at various levels, from sub-activities to 
activities, activities to work (bid) packages, and work packages to projects.  Two questions 
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arise: (1) At which level should data be collected to facilitate reliable comparison? (2) At 
which level can data be collected efficiently?  This second question is important as it 
facilitates collection of data across (potentially thousands) of construction firms, thus 
informing other aspects of the methodology. Further investigation is required to answer the 
fore mentioned questions before DEA can be successfully applied in construction. 
• Required transformations 

A basic requirement for productivity comparison across projects is consistency of units. 
Collected data may require simple transformations so that the productivity of construction 
crews doing a variety of work can be expressed in terms of an equivalent output of a single 
standard item. (While DEA can accommodate multiple outputs, it is unreasonable to expect 
that all possible outputs will be included in the analysis, and there must be some 
consolidation of data.) Thus, the productivity of all crews can be calculated for the same 
standard item during each time period regardless of the work performed. Likewise, crews 
from different projects can have their productivity calculated for the standard item. This 
facilitates comparing productivity of crews across projects because all the productivity values 
represent installing the standard item of work. Such transformations take the form of 
conversion factors described by Thomas (2000). The conversion factor shows how much 
more or less difficult an item is to install compared to the standard item. It remains a research 
issue to determine appropriate conversion factors that are consistent with the level detail of 
data collected. 
• Inputs and outputs 

Which inputs and outputs should be accounted for in the CCR-model? As Stigler (1976, 
p. 213-214) has observed, measured inefficiency may be a reflection of a failure to 
incorporate the right variables and the right constraints and to specify the right economic 
objective, of the production unit. However, we believe a starting point would be to 
breakdown the inputs of a construction subcontractor (DMU) into three managerial policies: 

• Equipment policies: equipment hours, sum of depreciation of capital equipment owned 
and expenses on capital equipment leasing, average maintenance expense as a 
percentage of equipment book value. 

• Workforce policies: labor hours.  
• Technical staff policies: expenditure on technical staff (salaries, training, etc.) 

As for the outputs, we consider each type of work performed by a subcontractor to be an 
output of that subcontractor. In other words, we treat the physical quantities installed in place 
as outputs (i.e. SF of concrete masonry units, CF of mortar, etc.). One of the benefits of DEA 
is its ability to flexibly incorporate different data inputs and output.  Unfortunately, with 
flexibility comes choice, and it remains a research issue to determine which inputs and 
outputs will be used. 
 
6.0 CONCLUSIONS 

This paper presents a Data Envelopment Analysis methodology as an approach to measuring 
and comparing subcontractor productivity at the firm level. DEA is an empirical, non-
parametric approach to productivity measurement that can be extended to multiple inputs 
(resources) and multiple outputs (products). It is specifically designed to compare 
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productivity between firms (decision making units or DMUs), ranking them against a frontier 
defined by the most productive firm(s). DEA appears well suited to measuring the 
productivity of construction subcontractors. The multi-input capabilities of DEA allow 
comparison of firms’ efficiency employing all their resources (a short-coming of much 
activity level construction productivity research which focuses only on labor). The multi-
output capabilities of DEA allow inclusion of the different types of products (e.g., built-up 
roofing vs. tiles) performed by the subcontractor; this allows comparison at the firm level to 
determine not just relative efficiency but also policy questions such as ‘what is the best mix 
of projects?’ The determination of a frontier provides not just a relative comparison among 
firms but also an absolute measure that can be used to measure productivity changes over 
time. DEA appears to have the requisite power and flexibility to be employed in 
construction; however, further research is needed to allow effective pre-processing of data 
for analysis using DEA methods. 
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