

USING REASONS FOR NON-COMPLIANCE TO ASSESS PROJECT PERFORMANCE IN THE LAST PLANNER SYSTEM®

Camilo Lagos¹, Luis Fernando Alarcón², Fabio Basoalto³ and Óscar Del Río⁴

- 1. Ph.D. Student at Pontifical Catholic University of Chile
- 2. Ph.D. Professor of Engineering at Pontifical Catholic University of Chile
- 3. Engineering student ad Pontifical Catholic University of Chile
- 4. Engineering student ad Pontifical Catholic University of Chile

Introduction

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Traditional management:

- Focused solely on the transformation view
- Result oriented

Koskela et al., 2002

Planning:

- One-time event based on methods such as Critical Path (CPM)
- Fixed, complex schedules with extensive use of slack
- Following the critical route rather than dynamic planning

Control:

- Focus on the iron triangle
- Earned Value Method (EVM)
- Use of aggregated indicators
- Comparing planned and actual progress

Toor and Ogunlana, 2010; Sarhan and Fox, 2012

- Problems:
- Deviations are only detected after the fact
- Use of slack can hide deviations
- Aggregated indicators conceal variability
- Traditional methods fail to detect and prevent early signs of deviation

Contributions to planning and control

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Understanding causes of deviation:

- Multiple analyses of factors that cause deviation
- Cross-impact analyses of multiple deviation factors
- Benchmarking metrics combining multiple factors that affect performance

Venkatesh et al., 2017; Doloi et al., 2011; Iyer et al., 2015

Improving detection and predictability:

- Graphical approaches to improve detection
- Probabilistic approaches to improve EVM predictability
- Multivariate models of project performance

The Last Planner System (R)

- Focus on processes: Work preparation, work-flow stabilization and short-term compliance.
- Systematical planning and control cycles to align long, mid and short-term scopes.
- Process-oriented metrics for work preparation, constraint management, compliance, variability and schedule accomplishment.
- Registering and learning from problems
- Over 27 years of experience

Research contributions to the Last Planner System® (LPS)

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Quantitative impacts of LPS

Alarcón et al., 2008; Leal et al., 2010; Viana et al., 2010; Kim et al., 2019; Lagos et al., 2019

Complements with traditional control:

- Understanding key differences between LPS and EVM approaches
- Combination of LPS and EVM

Kim et al., 2010; Buitrago, 2016; Novisky et al., 2018

- Relationships between LPS metrics and performance KPI
- Impact of LPS practices on project KPI

Gonzalez et al., 2008; Alarcón et al., 2014; Castillo et al., 2017; Kim, 2019

New metrics

Hamzeh et al., 2017; 2019

Limitations and needs:

- Partial implementations
- Small samples
- Need for more quantitative research

Daniel et al., 2015; Dave et al., 2015; Hamzeh et al., 2019

Opportunities:

- Information Technologies Support Systems
- New quantitative approaches and tools
- Early assessment capabilities using LPS metrics

Hamzeh et al., 2019; Kim et al., 2019; Lagos et al., 2019

Our aim and scope of research

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- Most quantitative research focused on high-rise building
- Quantitative use of Reasons for Non-Compliances (RNC) information has not been explored in depth
- Opportunity to assess frequency and impact of RNC

Gonzalez et al., 2014; Daniel et al., 2015

Focus on quantitatively assessing RNC in industrial construction projects

• What differences can be identified in projects with different schedule accomplishment?

We will try to:

- 1. Develop quantitative assessment metrics using RNC
- 2. Identify differences between successful and nonsucessful projects

Scope:

- 23 complete Chilean industrial projects using technological LPS support system
- Standardized weekly information (PPC, progress, constraints, RNC)
- Projects were classified into sucess and failure groups using clustering algorithms

Methodology of research

1. Literature review:

- Quantitative LPS research and new metrics
- Assessment of delay and deviation factors

2. Collection of information:

- Data collection with IT system
- Standardization of RNC data

3. Project clustering:

• Based on K-Means using schedule metrics (Accomplishment and deviation)

4. Constructing RNC metrics:

• Using RNC frequency and impact to develop new metrics

5. Comparing LPS metrics based on performance:

- Aggregating data for successful and non-successful projects
- Performing statistical analysis of differences
- 6. Using new RNC metrics to assess performance:
- Aggregating RNC data for successful and non-successful projects
- Performing statistical analysis of differences
- Determining applications of the new metrics

28th ANNUAL CONFERENCE OF THE

INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Information

BERKELEY, CA 6-12 JULY 2020

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Sample:

23 industrial construction projects using the same IT support system

Collected data:

- 773 weeks
- Percent Plan Complete (PPC)
- Percent Constraints Removed (PCR)
- Over 4.000 Reasons for Non-Compliances (RNC)
- Results:
 - Schedule Performance Index (SPI)
 - Schedule Deviation (SD)

RNC information:

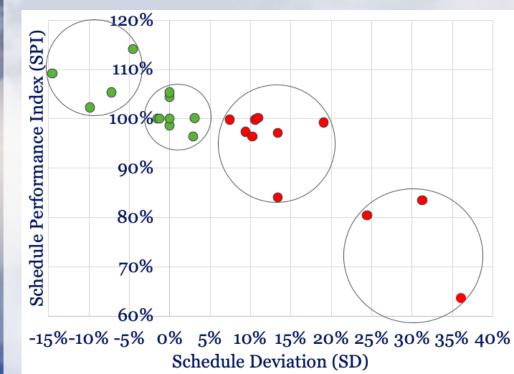
- % impact on each commitment
- Standardized type, source and origin:

Origin:	Source:	Туре:	
Internal	Contractor	Planning	Supply
External	Client	Coordination	Design
	Third parties	Productivity	Requirements
		Manpower	Delivery

RNC Relevance = Frequency * Average Impact

Clustering

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION


We used a recursive algorithm based on K-means, using the project SPI and SD as parameters.

- It minimizes the distance from each project to its cluster
- It maximizes the distance between cluster centers

We selected 4 clusters based on the algorithms results.

Classification rules represent the separation between the two center clusters

Success rule: SPI \ge 96% and SD < 5%

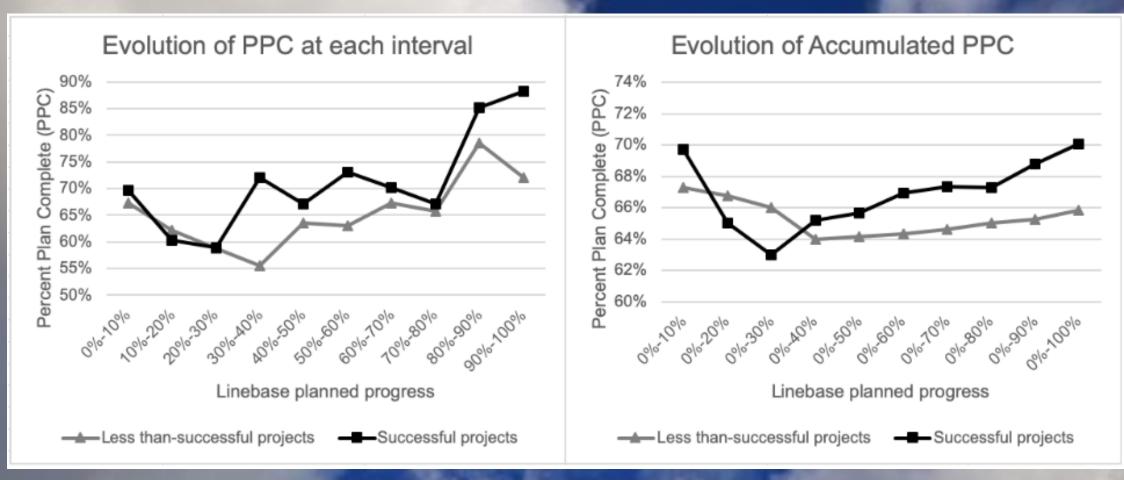
Comparison of LPS metrics

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

We tested statistical differences between:

- final SPI and SD
- PPC Average
- PCR Average
- Total number of RNC
- Total number of Constraints
- Average number of constraints per period
- Constraints per period (Normalized per 100 tasks)

We used the Mann Withney's U test with a confidence level of 95% (p<0.05) to validate our results.


Group Means	Success	Failure	Ratio
Number of projects	12	11	
Final SPI	103%	91%	1,13**
Final DP	-3%	17%	-6,04**
PPC Average	71%	66%	1,06
PCR Average	60%	68%	0,88
Total number of RNC	169	194	0,87
Total number of constraints	394	242	1,63*
Number of constraints per period	13,8	10,1	1,37*
Constraints per period by 100 tasks	8,4	4,1	$2,05^{*}$
*Significant to a 95% level **Significant to a 99% level			evel

- No significant differences in PPC and PCR values
- No find significant differences in the total number of RNC
- Successful projects manage twice as many constraints per task

PPC evolution over time

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

PPC differences were not statistically significant at a 95% confidence level (p>0.05)

RNC Analyses by origin

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Quantitative Relative Importance Index (QRII)

$$QRII = \frac{WR_i}{\overline{WR_{i..N}}}$$

• Weighted Relevance (WR) = RNC Frequency * Average % Impact

RNC Indicators per group	Success	Failure	Difference Ratio
Percent of Internal RNC	39,80%	62,50%	1,57*
QRII Internal source	0,38	0,61	1,61*
QRII External source	0,62	0,39	0,63*
QRII ratio of internal to external causes 0,61 1,57 2,57**			2,57**
*Difference is statistically significant to a 95% level **Difference is significant to a 99% level			

RNC Analyses by source

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Quantitative Relative Importance Index (QRII)

$$QRII = \frac{WR_i}{\overline{WR_{i..N}}}$$

• Weighted Relevance (WR) = RNC Frequency * Average % Impact

RNC Indicators per group	Success	Failure	Difference Ratio
Percent RNC caused by main contractor	37,81%	60,87%	1,61*
QRII Main contractor	0,54	0,92	1,70*
QRII Client	0,7	0,29	0,41*
QRII Third parties	0,27	0,28	1,04
Ratio of QRII Main Contractor to Client	0,77	3,2	4,16**
*Difference is statistically significant to a 95% level **Difference is significant to a 99% level			

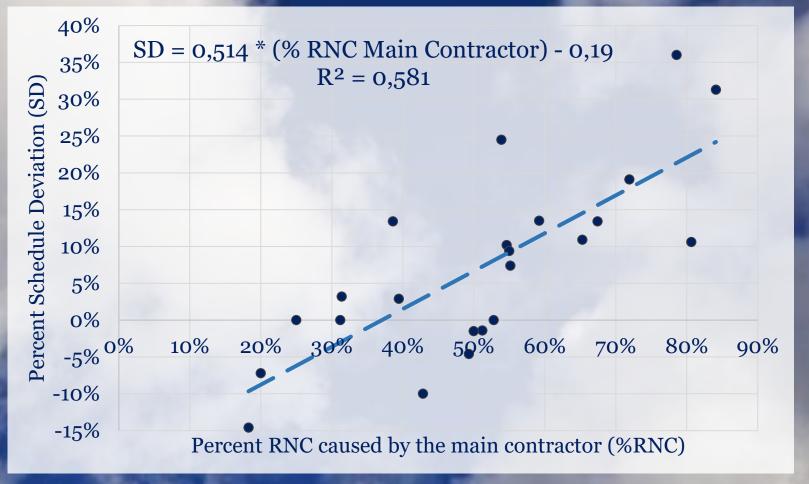
Correlations between RNC metrics and performance

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

We found two strong correlations and two moderate correlations

	Percent internal RNC	Percent RNC caused by the main contractor
SD	0,74*	0,77*
SPI	-0,47**	-0,53**
* ris considered strong if >0.6 and **moderate if between 0.50.0.4		

* r is considered strong if ≥0.6 and **moderate if between 0.59-0.4


- If a higher percent of RNC originate from internal problems (controllable issues), lower Schedule Performance Index (SPI) and higher Schedule Deviation (SD) values can be expected
- Similarly, the percent of RNC caused by the main contractor is positively correlated to Schedule Deviation (SD) and negatively correlated to Schedule Performance Index
- Relationships are stronger using Schedule Deviation as the project success metric

Correlation between RNC source and Schedule Deviation (SD)

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

The expected Schedule Deviation (SD) is positively correlated to the proportion of RNC caused by the main contractor in industrial construction projects

Conclusions

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- Correlation between RNC metrics and project performance
- RNC metrics can significantly differentiate successful and non-successful projects
- Differences found using RNC metrics are significantly higher than other LPS metrics
- Limitations:
 - Small sample (23 projects), using one IT support system and result classification is based on schedule performance
- Opportunities:
 - LPS metrics can be used to assess expected performance at early stages
 - Data Science tools like Machine Learning can be used to develop success rules
- Needs:
 - More quantitative research with larger samples