

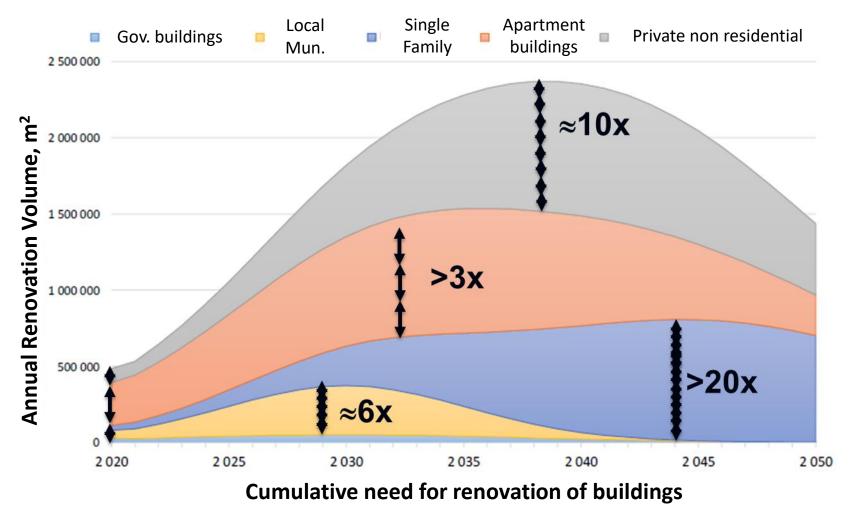
Challenges in Industrialized Renovation of Apartment Buildings

Ergo Pikas, Olli Seppänen, Lauri Koskela, Antti Peltokorpi

AGENDA

- Introduction
- Research Aim and Methods
- Case Description

- Results
- Discussion
- Conclusions



Introduction

- The new European Green Deal framework:
 - Renovation of existing building stock by 2050
 - Industrialization and digitalization of sustainable renovation
- Estonian Renovation Roadmap:
 - Improved quality of built environment
 - Reduction of thermal energy needs up to 70%, electricity consumption up to 20%, and CO2 emissions up to 90%
 - 141 000 (27 000 public, 100 000 single-family, and 14 000 residential) buildings with a total area of 5.4 million m2 need to be renovated

Introduction: The Challange

Traditional mineral-based construction methods not fit for purpose:

- Industrialization
- Digitalization

Research Aim and Methods

Research Aim:

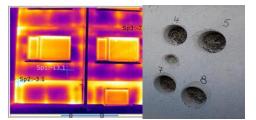
• To identify and understand existing practices, main barriers, and opportunities to develop the industrialized sustainable renovation of existing Soviet-time apartment buildings in Estonia

Research Method:

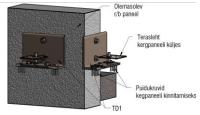
- A case study was carried out on the Akadeemia 5A student apartment building
 - Five semi-structured interviews
 - Secondary data sources: project documentation and presentations
- Two additional interviews with two building manufacturers to study their perspectives on the industrialized renovation of buildings

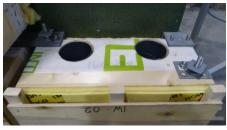
Case Description

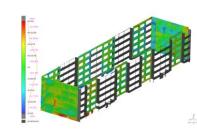
Objectives: A nearly zero energy building (105 kWh/(m2 a) and research of industrialized renovation **Building:** Five-story building (Soviet building type 121); 80 apartments; built in 1986


Conditions: External walls could not be removed as these formed an important part of the existing structural scheme **Energy Consumption:** Measured primary energy use 300 kWh/(m2 a)

Cost: Total 822 €/m2 (121 €/m2 general construction works, 251 €/m2 finishing works, 334 €/m2 on energy efficiency works and 116 €/m2 on nearly zero energy building works




Results: Practices


Building Research

New connection

Windows and ducts in factory

Laser Scanning

1. Existing concrete panel 250mm
2. Filling minoral wool
(11: 2e-00.25 W(mK)) 10..50mm
2. Filling minoral wool
(11: 2e-00.25 W(mK)) 10..50mm
3. Aid svapor retractor (nage in the second se

Design for MA

Installation on site

Installation video

Results: Barriers

Planning:

- No easy access to existing building project documents
- Scanned data was missing information and was not compatible
- Selected procurement model **Design:**
- Lack of moisture engineering, and engineering for fabrication competencies
 Manufacturing:
- Heavy elements to handle (bending)
- Soft materials challenged manufacturing

Transportation

- Lack of space for storage
- Storage on site caused water and moisture damage

Installation:

- Inaccurate installation of connections
- Handwork to fit elements on site
- Poor planning of installation process

Results: Opportunities

Planning:

- Library of project documents for different building types
- Scan to BIM workflows to automate inventory modelling

Design and manufacturing

- New connections
- Better technical solutions to reduce work on site
- Design automation (configurator)
- Integration of design, manufacturing and installation
- Design for manufacturing

Transportation

- New lifting equipment
- Just in time delivery to reduce water and moisture damage

Installation:

- Involving surveyors or using rapid reality capture to aid installation
- Prototyping of installation in factory and on the site
- Plan for installation flow
- Digital tools for production planning, coordination and control

Results: Summary

	Practices	Barriers	Opportunities
Planning	Studying archived project	Time-consuming to find; poor	Digitalizing original project
	documents; laser scanning	practices of scanning	documents; implement Scan to BIM
Design	Prefabricated wall and roof	Lack of knowledge and	Standardization of products;
	elements; 3D connections	understanding of industrialization	integration of value chain; automation and digitalization
Manufacturing	Sequencing; windows and	Heavy elements; inappropriate	Special lifting equipment; proper
	ducts installed in the factory	materials for manufacturing	choice of materials
Logistics and	Sequencing; different	Lack of space around the	Proper lifting equipment; just in
Transportation	equipment	building; weather	time delivery; material kitting
Installation	Procurement of trade partners	Installation of connections; poor	Involvement of surveyors I the
	based on lowers bid price	installation management	installation process; prototype installation; implement flow

Discussion

Barriers to Industrialized Renovation

- Procurement methods
- Traditional management approaches
- Industrialization and standardization capabilities
- Norms and standards
- Lack of competencies

Core Elements of Industrialized Renovation

- Product industrialization and standardization
- Process industrialization and standardization
 - Integration of supply chain
 - Collaborative procurement methods
 - Tolerance management
 - Collaborative planning and control
 - Prototyping for rapid learning
 - Digitalization
 - Continues improvement

CONCLUSIONS

Large scale renovation brings forth challenges and opportunities for а systemic change in the construction industry

capabilities New for delivering industrialized renovation of sustainable buildings are needed

Improving the sustainable renovation of existing buildings requires а comprehensive and systemic approach

THANK YOU!

Ergo Pikas Ergo.pikas@Taltech.ee