

VARIETY IN VARIABILITY IN HEAVY CIVIL ENGINEERING

Anne Fischer, Niklas Grimm, Iris D. Tommelein, Stephan Kessler, and Johannes Fottner

AGENDA

- Introduction
- Purpose of this paper
- Related work
- Sources of variability
- Industry 4.0 tools to address variability
- Conclusions

INTRODUCTION

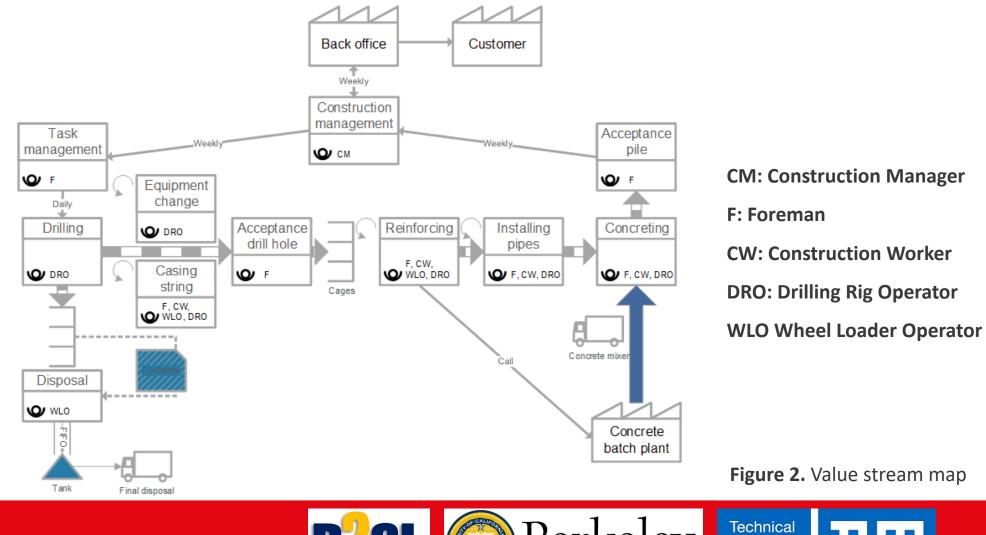
- Industry 4.0 [1] challenges the construction industry to adopt digital technologies in order to address its ever-increasing complexity [2].
- Pure adaptation of technologies does not optimize a process [3].
- One needs to define **sources of variability** in a system to identify the adjustments that can be made in order to manage or even improve the system [4].

- [1] Lasi, H., Fettke, P., Kemper, H.-G., Feld T., and Hoffmann, M. (2014) "Industrie 4.0." Bus. Inf. Syst. Eng., 6(4), 239-242.
- [2] McKinsey (2017). Reinventing Construction: A route to higher productivity. McKinsey Global Institute, www.mckinsey.com/mgi (March 31, 2021).
- [3] Lander, E., and Liker, J.K. (2007). "The Toyota Production System and art: making highly customized and creative products the Toyota way." Int. J. of Production Research, 45(16), 3681-3698, DOI: 10.1080/00207540701223519.
- [4] Tommelein, I.D. (2000). "Impact of Variability and Uncertainty on Product and Process Development." ASCE, Proc. Construction Congress VI, 20-22 Feb., Orlando, Florida, USA, 969-976, DOI: 10.1061/40475(278)101.

PURPOSE OF THIS PAPER

- What are characteristics concerning the application of lean principles?
- Which variabilities influence the Kelly drilling production?
- How may these be addressed by Industry 4.0?
- → Semi-structured interviews are conducted
- → Results are compared with estimating production rates of earthmoving literature.

Figure 1. Rotary drilling rig at test site of Bauer Group in Schrobenhausen, Germany (Pictures by Fischer, A.)


RELATED WORK

- **Multi-story construction** deals as much with the sharing of resources as it does with the interdependence between them.
- Earthworks focus is on fleet interaction
- Foundation-pile production have been isolated and limited as a one-piece flow line dependent on single machine due to high complexity
- Characteristics of variability in product and process [4]:
 - Product is defined by its parts, e.g. functionality, configuration, and geometry.
 - Process is defined by its activities, e.g. resource assignment and sequencing of activities.

PILE PRODUCTION USING KELLY METHOD

Technical University of Munich

SOURCES OF VARIABILITY

Variability	Digital model	IoT	AI	Simu- lation	Appropriate technologies help
1. Contractual requirements	Х			Х	gain a better understanding by visualization.
2. Environmental influences			Х	Х	handle weather forecasts.
3. Site organization	Х	Х		Х	visualize and test site logistics in advance.
4. Geology	Х		Х	Х	visualize the single soil layers to improve reaction time.
5. Operator skill		Х	Х	Х	track and analyze personnel's performances.
6. Operating conditions		Х		Х	monitor and virtually test routing strategies.
7. Abrasion and failure			Х	Х	predictive maintenance and capture stochastic failure.

Table 1. Variabilities in relation to Industry 4.0 tools

INDUSTRY 4.0 TOOLS

Variability	Digital model	ΙοΤ	AI	Simu- lation	Appropriate technologies help
1. Contractual requirements	Х			X	gain a better understanding by visualization.
2. Environmental influences			х	X	handle weather forecasts.
3. Site organization	Х	Х		X	visualize and test site logistics in advance.
4. Geology	X		Х	X	visualize the single soil layers to improve reaction time.
5. Operator skill		Х	х	X	track and analyze personnel's performances.
6. Operating conditions		Х		X	monitor and virtually test routing strategies.
7. Abrasion and failure			Х	X	predictive maintenance and capture stochastic failure.

Table 1. Variabilities in relation to Industry 4.0 tools

CONCLUSIONS

A comparison with earthmovings and expert interviews reveal **7 sources of variability** and derived recommendations. Process improvements will depend not solely on Industry 4.0 tools but on improvements in the **socio-technical system**.

Implementation of **lean principles** and standard **workflows** serve as a basis for adaptive **simulation studies** to capture variability.

THANK YOU!

Anne Fischer, M. Sc.

anne.fischer@tum.de

Technical University of Munich TUM Department of Mechanical Engineering Chair of Materials Handling, Material Flow, Logistics

