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ABSTRACT

Construction can be considered a socio-technical system, which is challenging to model
due to the many agents interacting either in a managed way or autonomously. Therefore,
cause and effect models are hard to validate, and a traditional correlation approach is
insufficient. In this study, the method of robustness testing was applied to test the effect
stability when assumptions of a model are changed. The research objective is to apply
robustness testing on WS data to assess the robustness and validity of the WS method.
An actual refurbishment project was the case for this study, where data was acquired
through nine days of continuous WS application. Time-series data were grouped into
Direct Work (DW), Indirect Work, and Waste Work. Several different robustness tests
were applied. It can be concluded that the WS method is robust, i.e., the effect (DW) is
stable even if the assumptions are changed severely. Deleting 90% of the sample does,
for instance, almost not change the effect. Likewise, if errors are infused into the sample,
the effect is stable. Also, if certain structural parts are excluded from the sample, e.g.,
observations during morning startup, etc., the effect is still stable.
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INTRODUCTION

Construction is often described as a complex project system (Bertelsen, 2003; Lindhard
& Wandabhl, 2013). The concept of why and how a project is complex has developed over
time. Williams (1999) describes two dimensions of complexity. Firstly, structural
complexity (Baccarini, 1996) is the number of elements in a system and the
interdependence of the elements. Elements can be both organizational and product-wise.
Secondly, the degree of uncertainty in both how well defined the project's goals are and
how well defined the methods of achieving those goals are. Later, three additional
dimensions of complexity were added to the understanding (Geraldi et al., 2011). The
first, dynamics, refers to changes in projects, i.e., changes in specifications. Changes are
enforced on a project from both outside and inside. Changes lead to rework, disorder, and
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inefficiency. The second, pace, is a type of complexity, as urgency and criticality of time
and goals require managerial attention. The third, socio-technical complexity, is
supported by a strong stream of research that stresses that projects are carried out by
human actors with potentially conflicting interests and incompatible personalities.

All of the abovementioned dimensions of complexity are often present in large
construction projects, sometimes resulting in poor performance. Both an effort to analyze
root causes of low performance and an effort to improve performance by infusing new
innovations, structures, procedures, etc., depend on the rationale that nothing happens
without reason, i.e., effects have causes. Due to the complexity of construction, it is
difficult to use a simple correlation of one effect based on one cause. Thus, it is very hard
in construction to prove a causal relationship of performance and cause.

Nonetheless, academics often try to develop different models of construction that
attempt to show how a complex socio-technical system like construction works. The
purpose of a model is usually to visualize, understand, or optimize. They can range from
simple models with few variables and components (e.g., input-output model or a black
box diagram) to larger and more complex models with many variables and components
(e.g., Building Information Modeling (BIM) including time). The beauty of a model is
that it is not reality; it is a simplification. This fundamental understanding of the
abstraction is frequently forgotten or misunderstood, as some researchers and
practitioners tend to think that a model is a one-to-one representation of the real world.
Many models are either misinformed. i.e., contain errors, wrong assumptions, etc., or are
under-informed, i.e., too little data and information levels are too low. It can rightfully be
assumed that most models are misinformed or under-informed; thus, they are challenged
on their validity (Neumayer & Plimper, 2017).

Accepting that models are only a simplified representation of a social-technical
system gives rise to the importance of assessing a model’s validity. Determining the
strength of a correlation of two variables as a means of validity for a cause and effect is
insufficient given the complex nature of construction projects. Instead, robustness can be
introduced to determine how valid a model of a social-technical system, like construction,
is. Robustness is a way of assessing the effect stability of a model when assumptions and
structures of the model are gradually changed (Neumayer & Plimper, 2017).

The objective of this research is to devise a method for assessing the robustness and
validity of the WS method.

The following part of the paper describes the theoretical background in two parts. First,
Work Sampling as a way of measuring and modeling time waste in construction. Second,
Social Complexity and Robustness as a method of assessing a model’s validity.

MODELING TIME WASTE IN CONSTRUCTION

One of the areas, the Lean Construction community has struggled to model, is measuring
time waste. Questions like ‘how can time waste be measured?’, ‘what are the root causes
of time waste?’, and ‘how does implementing Last Planner and other Lean approaches
reduce time waste?’ are addressed in several research studies, e.g., (Bglviken & Kalsaas,
2011; Kalsaas et al., 2014; Lerche et al., 2022; Neve et al., 2020; Wandabhl et al., 2021).
Bolviken & Kalsaas (2011) recognized a need for a more valid method for measuring
time waste. Thus, they reviewed a number of direct and indirect measurement methods,
and Kalsaas (2011) concluded on the method selection that a suitable method for
measuring workflow should mainly be based on the Work Sampling (WS) method.
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WORK SAMPLING TO MEASURE TIME WASTE

The WS method has been used for decades to collect data on the amount of value-adding
work time, referred to as Direct Work (DW) in the WS method (Gong et al., 2011). WS
is a quantitative method applying direct observations to obtain data on how workers use
their time on the construction site. In general, WS has been applied throughout time to
improve, often single construction projects regarding efficiency, construction labor
productivity, and construction cost and time. Thomas (1981) provides relevant insights
on how a WS study can be planned and how the collected data can be analyzed. In this
research, the present authors apply a more statistical approach to WS in order to validate
the robustness of the method in general. However, the authors still acknowledge that WS
should mainly be applied to improve a single construction project.

The WS method quantifies how much time workers use on direct work and other
categories of preparatory work and waste work. All WS studies apply a DW category.
However, the picture is more blurred when it comes to the preparatory and waste work
categories. Some studies categorize all none direct work time as waste, while other studies
have a more detailed view of non-value-adding work. Generally speaking, non-value-
adding work time can in WS be divided into Indirect Work (IW) and Waste Work (WW),
resulting in WS having three categories of time; DW, IW, and WW. Work Sampling and,
in particular, the share of DW’s relation to productivity has been debated throughout time,
as DW directly influences the denominator and indirectly the numerator of the
productivity equation. However, recent studies conclude that DW is statistically
significantly correlated to construction labor productivity at activity, project, and national
levels (Araujo et al., 2020; Neve et al., 2020; Siriwardana et al., 2017) and, thus, can be
applied as an acceptable indicator for productivity.

CRITIQUE OF WORK SAMPLING

Wandahl et al. (2021) identified 474 case studies where WS was applied in construction.
Thus, it can be concluded that the method is widely used. Nonetheless, a severe critique
of the method exists, e.g., Josephson & Bjorkman (2013). Several of the critical points
are related to the robustness of the WS method and the potential lack of causality.

Categorizing work activities into direct work and subcategories of preparatory and
waste work is very inconsistent (Josephson & Bjorkman, 2013; Wandahl et al., 2021).
This makes cross-case comparison difficult, like any longitudinal meta-analysis (Horman
& Kenley, 2005; Josephson & Bjorkman, 2013). However, it seems that the consequence
of inconsistent categorization has not been further researched. In relation to the
categorization, Johansen et al. (2021) discovered that, in particular, preparatory work is
often considered as direct work by many practitioners and also by some academics. This
despite that Ohno (1988) clearly articulated which kinds of activities are value-adding
and which are not. The inconsistent understanding of value-adding and non-value-adding
work has also led to a critique of WS relying on individual observers (Jenkins and Orth,
2004; Josephson & Bjorkman, 2013). These observers might be biased and have a non-
aligned understanding of waste and value (Neve et al., 2020).

CAUSAL COMPLEXITY AND ROBUSTNESS

When developing a model based on empirical data, it is an interpretation of the actual
phenomenon. To capture the true processes of a complex world, researchers would need
to precisely know the set of regressors, include all relevant variables and exclude all

Lean Theory 249



Robustness of Work Sampling for Measuring Time Waste

irrelevant variables, operationalize and measure these variables correctly, etc. (Neumayer
& Plimper, 2017). This is not possible. Researchers today agree that a model cannot be
specified correctly due to causal complexity. Traditionally, the strategy is to apply
assumptions and to accept underdetermined models. The aim of an underdetermined
model is a simplified model. However, underdetermination often ends in misspecification,
as it requires intensive knowledge to simplify in a valid way (Neumayer & Plimper,
2017). The misspecification of models is a well-known problem, and as Box & Draper
(1987) concluded: “All models are wrong, but some are useful.” Therefore, researchers
must find the optimal trade-off between simplicity and generality to ensure models are
not misspecified, as misspecified models lead to biased conclusions.

Causal complexity is an extension of the causality concept, which is often related to
correlation. Causality is the study of how things influence one another and how causes
lead to effects. There are a number of basic assumptions in a classical (and physics-related)
understanding of causation. Firstly, things (effects) have causes. They do not just happen
of their own accord. Secondly, effects follow causes in a predictable, linear manner. E.g.,
concrete cures faster if you increase the ambient temperature. Thirdly, big effects can
grow from several small causes, e.g., several minor variations in activity durations can
suddenly cause a delay of an entire construction project. Having identified a cause-effect
relationship, it often becomes relevant to measure the strength of this relationship. As
elaborated later in this paper, it can be difficult to precisely express and measure the
strength of such a cause-effect relationship. Often, statistical measures are applied to
consider the relationship between two variables, a course variable (the predictor variable)
and the effect variable (the response variable). This is referred to as the statistical
correlation of cause and effect. However, correlation does not always imply causation. It
is two different measures that can, however, be coinciding. In the world of classical
physics, this is often the case, and correlation can be a good indicator of, e.g., the
causation between ambient temperature and concrete maturity.

CAUSAL COMPLEXITY

Causal complexity is the interpretation of cause-effect in social science. It differentiates
from the classical understanding of causation on five important dimensions (Neumayer
& Plumper, 2017): (1) Cause-effect relationships in the social world are probabilistic
instead of deterministic, therefore, the probability of an effect is a continuum from 0 (a
cause does not have an effect) to 1 (the cause is deterministic); (2) Causal complexity is
the existence of conditional causal effects and heterogeneous causal effects. Some causes
only have an effect if certain conditions are satisfied (Franzese, 2003); (3) The timing of
cause and effect. Scholars all too often implicitly assume that an effect occurs
immediately after a cause. Yet, effects can occur with a delayed onset; (4) In the real
world, effects can precede causes. Human beings have rational expectations about
potential future effects and may already act on their expectations rather than on the cause
itself. This is called the Cause-precedes-law; and (5) Effects can affect non-treated causes.
In the social world, spill-over effects from the treated to the untreated are likely.

ROBUSTNESS AND ROBUSTNESS TESTING

Acknowledging the existence of causal complexity as the boundary conditions for causes
and effects on construction sites, another measure than the traditional correlation
assessment is needed to assess the strength of a relationship between variables in a model
built to simulate construction. Instead, the model’s robustness must be tested by
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systematically removing or changing the assumptions. However, it is difficult to give an
unequivocal definition of robustness, as this concept is differently defined in several
domains. When investigating the different application domains of robustness, the lack of
a unique definition becomes visible. In project management, Robust Decision Making is
defined as “a set of concepts, processes, and enabling tools that use computation, not to
make better predictions, but to yield better decisions under conditions of deep uncertainty”
(Lempert, 2019). This is similar to the definition of robustness in statistics, which is
“Robust statistics addresses the problem of making estimates that are insensitive to small
changes in the basic assumptions of the statistical models employed” (Fabozzi et al.,
2014). Insensitivity is also the core of robustness in scheduling, as “a schedule is robust
if its performance is rather insensitive to the data uncertainties [...]” (Billaut et al., 2008).
In this research, robustness is defined in a simple way as “effect stability.” In WS, this
equals measuring DW and Clgse, stability when assumptions and sample size are altered.

When acknowledging construction sites as a phenomenon in which causal complexity
exists, a need to investigate any model of that phenomenon for robustness arises. The
robustness testing is to test and analyze the uncertainty of a model and test whether
estimated effects of interest are sensitive to changes in model specifications. The literature
describes an extensive range of robustness grouped into model variation, permutation,
limit, and placebo tests. The following method section describes which robustness tests
were applied in this research.

RESEARCH METHOD

The WS method was used in the case study to collect a data set that could be used for
robustness testing. The case consisted of a social housing refurbishment project of 24
five-story buildings. The main renovation tasks were related to carpentry work, such as
replacing windows and roofs and installing new ventilation and electrical systems.

WS data were collected during nine days, named Day 1 to Day 9, with observations
from work begins in the morning until work ends in the afternoon (i.e., from 07.00-15.30,
excluding break times from 09.00-09.15 and 11.30-12.00). Two different observers,
named Observer A and B, randomly toured the construction site. The WS method was
applied in seven trades, constituting 40 workers. After completing the nine days of data
collection, 1,550 random observations (representing a sample of N=1,550) were recorded
with a 95% confidence interval (Clgsy) of + 3.42%. In order to avoid patterns of behavior
and to reduce the variability of the measurement, the authors collected a homogeneous
sample. The average of the sample was 172 observations per day, with a standard
deviation of around 43 observations, through the nine days of data collection (see the
table in Figure 1), resulting in around three observations every 15 minutes. In this study,
a six-work category classification was adopted. The applied categorization follows the
method of Activity Analysis (ClI, 2010), which outlines which work activities must be
put into which categories. The six categories are: (1) production, e.g., installing gypsum
boards; (2) talking, e.g., discussing the installation process; (3) preparation, e.g.,
measuring with a ruler; (4) transportation, e.g., carrying tools; (5) walking, e.g., moving
empty-handed; and (6) waiting, e.g., delaying action until receiving material.

ROBUSTNESS TESTING

After data collection was completed, robustness testing was applied. Robustness testing
was conducted in four steps, according to the approach outlined by Neumayer & Plimper
(2017): (1) Define the subjectively optimal specification for the data-generating process

Lean Theory 251



Robustness of Work Sampling for Measuring Time Waste

at hand, i.e., the baseline model; (2) Identify assumptions made in the baseline model,
which are potentially arbitrary; (3) Develop models that change one of the baseline
model’s assumptions at a time; and (4) Compare the estimated effects of each robustness
test model to the baseline model and compute the estimated degree of robustness.

Step 1: Defining the baseline model

The first step consisted of defining the baseline model. In this case, the baseline model
was the actual WS data collected, consisting of the 1,550 random observations collected.
Figure 1 shows the results of the baseline, including a stabilization curve, 95% confidence
interval, split between the WS categories, and information on the data collection.

N DWW ww
Day1(Tue) 210  25%  51%  24%
Day2(Wed) 245  15%  49%  36%
Day3(Thu) 161  30%  60% 9%
Day 4 (Fri) 110 34%  55%  11%
Day5(Mon) 207  24%  62%  14%
Day6(Tue) 156  19%  58%  23%
Day7(Wed) 184  32%  45%  23%
Day8(Thu) 152  20%  51%  29%
Day 9 (Fri) 125 30%  46%  24% — DirectWotk (W)

95%
Total 1550 25% 53% 22% % 95% confidence interval
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
No of observations

Figure 1: Baseline of work sampling data.

Step 2: Defining assumptions in the model

The second step, defining assumptions in the WS model, was a brainstorming session to
identify important assumptions. Five fundamental assumptions in the WS model were
identified (i) Each workday is similar, i.e., observations are uniform; (ii) Direct Work
stabilizes after around 550 observations; (iii) Productive and preparatory work can be
distinguished based on momentary observations; (iv) A few observation errors do not
influence the overall result; and (v) Results are independent of the observers.

Step 3: Defining Robustness test models

Three different types of robustness tests were applied: (1) Model variation; (2)
Randomized permutation; and (3) Structured permutation. In the Model variation tests,
assumptions (i) & (ii) are tested. In the randomized permutation tests, assumptions (iii)
& (iv) are tested. In the final structured permutation test, assumptions (i) & (v) are tested.

Firstly, the model variation tests change one, or sometimes more, model specification
assumptions and replace them with an alternative assumption. Our analysis changed the
sample size, both reversibly, by deleting data points from the end of the data collection
period towards the beginning, and randomly from 0% to 100%. A Monte Carlo
Simulation of 500 simulations was conducted for each alteration to analyze the effect
stability (change in DW and 95% Confidence Interval, Clgss).

Secondly, a randomized permutation test was conducted on different assumptions.
Random permutation tests change specification assumptions repeatedly. Errors were
infused randomly into the sample to monitor effect stability in one analysis. Again, 500
runs of Monte Carlo Simulation were conducted. An error is a faulty observation, i.e.,
interpreted or noted into a wrong category in the WS study. It is common that production,
preparation, and talking get confused and wrongly noted. This was analyzed, applying
Monte Carlo Simulation to investigate the effect stability.

Thirdly, a structured permutation test was conducted on the specific assumption in the
WS model. Structured permutation tests change a model assumption within a model space
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systematically. Changes in the assumption are based on a rule rather than random.
Different structures, i.e., parts of the sample, were deliberately excluded in the Monte
Carlo simulation, like specific days, the first hour, observation after lunch, observer 1,
observer 2, etc. Again, the effect stability on DW and Clgsy Were observed.

Step 4: Robustness testing analysis

The fourth and final step, comparing results to the baseline, was conducted to discuss and
interpret the results. Lastly, the authors presented some of the main implications for
practitioners of the present analysis.

FINDINGS — INTERPRETING THE ROBUSTNESS TESTING

MODEL VARIATION TESTS

The model variation tests investigated the effect of stability when changing the sample
size. The first test was to reduce the sample size reversibly, starting from N=1,550. The
effect is illustrated on the stabilization graph, cf. figure 1. DW is stable from N=700,
which is after day 4. In other words, reducing the sample size by 55% did not influence
DW or the 95% confidence interval. Another approach was to reverse the sample size
until DW exceeded the final 95%-confidence interval. At N=1,550 DW is 24.65% and
Closg is £3.42%. The sample size was, thus, reversed until it exceeded 24.65%=3.42%,
which occurred at N=559 (after day 3), where the lower confidence interval was exceeded.

A second model variation test reduced the sample size randomly. A random reduction
is an irreversible reduction of the sample size. Table 1 illustrates the effect stability of
DW and Clgse corresponding to a random deletion of observation, i.e., a random reduction
of sample size. Results are based on 500 Monte Carlo simulations.

Table 1: Random deletion of observations resulting in a random decrease in sample

size.

Sample N DW Clasw
Baseline (N=100%) 1,550 24.65% 3.42%
Random (N=90%) 1,395 24.54% 3.49%
Random (N=80%) 1,240 24.61% 3.62%
Random (N=70%) 1,085 24.51% 3.74%
Random (N=60%) 930 24.57% 3.91%
Random (N=50%) 775 24.56% 4.18%
Random (N=40%) 620 24.47% 4.48%
Random (N=30%) 465 24.61% 5.01%
Random (N=20%) 310 24.45% 5.81%
Random (N=10%) 155 24.78% 7.51%

Table 1 shows that a random decrease in sample size had almost no influence on DW but
clearly increased the Clgsg interval, making the data less valid. Nonetheless, reducing the
sample size by 50% only increased the Clgso, by 22.22%.

RANDOMIZED PERMUTATION TESTS

The first randomized permutation test investigated assumption (iv) by looking at the
effect stability if the observer made mistakes. There are two types of mistakes;

Lean Theory 253



Robustness of Work Sampling for Measuring Time Waste

misinterpreting an observation and assigning an observation to the wrong trade or work
samling category. 500 Monte Carlo simulations were conducted for each change, cf table
2. Table 2 shows that randomly changing categories affected both DW and Clgse, however,
the impact was insignificant. 20% error equals 310 errors or 4.6 errors per observed hour,
which impacted DW with 10.5%.

Table 2: Random error in categories.

Sample N DwW Closo

Baseline 1,550 24.65% 3.42%
5% error, Random category 1,550 23.92% 3.37%
10% error, Random category 1,550 23.39% 3.32%
20% error, Random category 1,550 22.07% 3.21%
30% error, Random category 1,550 20.85% 3.10%
40% error, Random category 1,550 19.58% 3.02%

The second random permutation test was more realistic, as it is not likely that the observer
mistakes, e.g., walking for production and so on. Realistically, the observer could
misinterpret preparation with production and vice versa, and talking with production and
vice versa. The effect stability of such confusion is shown in table 3. Once again, the
results in table 3 were based on 500 Monte Carlo simulations.

Table 3: Production to preparation and vice versa.

Change Baseline 5% 10% 15% 20% 25%
DW=Clossy DW=Closse DW=Clossy DW=Closse DW=Closse DW=Closy

Preparation to 24.65% 25.87% 27.11% 28.13% 29.47% 30.72%

production +3.42% +3.47% +3.51% +3.55% +3.60%  +3.64%
Talking to 24.65%  24.80% 25.41% 25.96% 26.32%  26.50%
production +3.42% +3.42% +3.43% +3.44% +3.45% +3.45%

Production to 24.65% 23.30% 22.11% 20.71% 19.79% 18.39%
talking or prepa. +3.42% +3.31% +3.21% +3.09% +3.01% +2.88%

Table 3 shows that a change from the value-adding DW category to the preparatory
category of Indirect Work or vice-versa influences the DW. Johansen et al. (2021)
concluded that the observer misinterpreting preparation as production is the most
common error. If 25% of the preparation observations are misinterpreted or wrongly
assigned to production, DW is 30.72%, which almost equals one-third of the work time.
One-third of the work time being productive is often referred to as state-of-the-art.

STRUCTURED PERMUTATION TEST

A structured permutation test infuses structured and logical changes in the baseline model.
Table 4 shows that most of the structured exclusions had a limited impact on the stability.
In this case, assumptions regarding the uniformity of observation days and time of the
day, and the independence of the observer were analyzed. The sensitivity of DW and Clgse
were analyzed based on excluding designated parts of the sample as described above.
Only excluding the first, the last, or both the first and last hour of the day had an impact
on the DW stability higher than 1 percent point. Most significant is the result when
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observer A or B is excluded. This has a significant impact on the average DW and the
confidence interval.

Table 4: Exclusion of structured part of the Work Sampling.

Sample size N DwW Clos
Baseline 1,550 24.65% 3.42%
Excluding mornings (from 07.00-11.00) 676 24.70% 5.08%
Excluding afternoons (from 11.30-15.30) 874 24.60% 4.66%
Excluding first hour (from 07.00-08.00) 1,310 26.95% 3.76%
Excluding last hour (from 14.30-15.30) 1,443 25.71% 3.61%
Excluding both the first and last hour 1,203 28.43% 3.99%
Excluding observer A 398 25.88% 8.26%
Excluding observer B 697 27.40% 4.32%
Excluding Mondays 1,343 24.72% 3.76%
Excluding Tuesdays 1,184 25.34% 4.11%
Excluding Wednesdays 1,121 25.60% 3.99%
Excluding Thursday 1,237 24.41% 3.68%
Excluding Fridays 1,315 23.35% 3.62%
DISCUSSION

In WS, there is an assumption that the share of DW is an effect of efficient management
and planning. However, there is no single cause variable, as multiple factors will affect
the DW share. Therefore, WS does not fit well with the traditional concept of causality.
Josephson & Bjérkman (2013) argues that WS can not be used for cross-case comparisson
as there are too many factors influencing the share of DW. In other words, a single cause-
effect relationhsip can not be devised based on WS, which is a limitation of the method.
This research confirms that limitation. WS and DW as a response variable should instead
be understood in the light of causal complexity.

The five dimensions in causal complexity suit well with WS. Improved management
and planning have a probabilistic impact on DW and cannot be modeled with 100%
precision. In addition, the effects are heterogeneous and depend on an unknown mix of
conditions. WS is time-sensitive because one cannot expect the effect (improved DW
share) right after implementing new management and planning initiatives. It might be
delayed, and it might fluctuate. As construction is a social-technical system with many
actors, improved DW might be measurable without any causes implemented, merely due
to the expectation of effects among workers. Moreover, there is a likely spill-over as one
trade with optimized planning and management can improve DW of other trades that have
not received implementation. Based on these five dimensions, causal complexity can be
used to understand and reject some of the critique of work sampling that has been raised
based on a traditional correlation and cause-effect thinking.

The robustness testing of WS also can reject some part the WS critique, i.e. lack of
causality. However, the critique rasied that the misinterpretation of VAW and NVAW
will influence the WS result still remains. Also the dependence of the observer was raised
as a critue, and this has also not been possible to reject based on the robustness testing.
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IMPLICATIONS FOR PRACTITIONERS

The results provided a new angle to the body of knowledge for WS by utilizing the
robustness method to understand WS measures, contributing to the ongoing discussion of
productivity in both construction (Neve et al., 2020) and offshore wind (Lerche et al.,
2022). However, it also raises a question regarding the levels of productivity that today
are considered state-of-art. In particular, if DW is not adequately separated from IW and
WW. As the random permutation test in table 3 showed, an incorrect categorization of an
observation (production vs. preparation and talking) will have a direct impact on DW.
That is, 10% faulty registration will result in a change in DW of 10%. Therefore, the WS
method is still considered sensitive toward the categorization of observations.

On the other hand, the structured permutation test showed that the WS is robust
towards structural changes in the observation patterns. Most structural changes in
observation patterns only had a limited effect on DW. However, excluding the first and
last hour of the day did have some impact. This can be explained by the start and stop of
the day, where less production is going on, as time is spent on preparing, moving, cleaning,
etc. This is in line with Neve et al. (2020), who concluded that inparticular starts and stops
are critical to gaining high labor productivity.

From a practical perspective, the findings show how misinterpretation of work
categories can transform less promising results into state-of-art results. Meanwhile, the
robustness testing also revealed that random sampling, even with fewer observations, can
still be considered significant and provide a proper indication of productivity. Therefore,
the methodology can easily be applied by practitioners without being too worried about
the potential faulty application.

CONCLUSION

This research aimed to apply robustness testing on a WS data set gathered in a real
construction project to assess the robustness and validity of the WS method. That
objective has successfully been achieved.

This paper discussed that the widespread assumption considering that the share of
time spent on DW in the construction process is an effect of efficient management and
planning cannot be explained considering a single cause variable, as multiple factors will
affect the DW share. Because of that, the robustness test can be considered a suitable
method to test and analyze the uncertainty of the work sampling method.

After analyzing the data collected in a single case study, it can be concluded that the
WS method is robust. Three different types of robustness testing were conducted, and
most changes in assumptions, sample size, structure, and internal logic in the WS method
only had a limited effect on the average DW result and its confidence interval. Most of
the critique of WS cited in this work can, thus, be refuted. Only the dependence of the
observer and the categorization of DW and preparatory work need attention and require
more research in the future to conclude upon finally.
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